Advertisement

Annals of Biomedical Engineering

, Volume 38, Issue 1, pp 66–76 | Cite as

The Glenohumeral Capsule Should be Evaluated as a Sheet of Fibrous Tissue: A Validated Finite Element Model

  • Susan M. Moore
  • Benjamin Ellis
  • Jeffrey A. Weiss
  • Patrick J. McMahon
  • Richard E. Debski
Article

Abstract

The function of the glenohumeral capsule has typically been evaluated by isolating several discrete, ligamentous regions during experimental and computational investigations. However, recent data suggests that the regions of the glenohumeral capsule have significant interactions and function multiaxially. Therefore, examining the function of the inferior glenohumeral ligament as a discrete structure may not be appropriate. The objective of this work was to validate the predicted strain distribution and deformed shape of the inferior glenohumeral ligament using experimental data for two subject-specific finite element models: (1) a continuous model including all capsular regions, and (2) a discrete model including only the inferior glenohumeral ligament. The distribution of maximum principal strain and deformed shape of the glenohumeral capsule was determined for a cadaveric shoulder in a joint position frequently associated with dislocation (60° of glenohumeral abduction, 52° of external rotation, and a 25 N anterior load applied to the humerus). The experimental kinematics were then applied to the two finite element models constructed from the geometry and material properties from the same cadaveric shoulder and the predicted strain distributions and deformed shapes were determined. For the continuous model, the average difference between predicted strains and experimental strains was less than 5%. The predicted deformed shape was also similar to experimental data, with the anterior band of the inferior glenohumeral ligament clearly wrapped around the humeral head. In contrast, large differences existed between the strains predicted by the discrete model when compared to the experimental strains for this joint position (average difference from experimental data was 20%). In addition, the predicted deformed shape of the inferior glenohumeral ligament did not wrap around the humeral head. These differences may be attributed to neglecting the complex interactions between the anterior band of the inferior glenohumeral ligament with the neighboring capsular regions. Thus, the glenohumeral capsule should not be evaluated as several discrete structures. Rather, it should be evaluated as a single sheet of fibrous tissue.

Keywords

Shoulder Strain Kinematics 

Notes

Acknowledgment

The support of NIH grants AR-050218 and AR-047369 is gratefully acknowledged.

References

  1. 1.
    Anderson, A. E., C. L. Peters, B. D. Tuttle, and J. A. Weiss. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J. Biomech. Eng. 127:364–373, 2005.CrossRefPubMedGoogle Scholar
  2. 2.
    Arciero, R. A., J. H. Wheeler, J. B. Ryan, and J. T. McBride. Arthroscopic Bankart repair versus nonoperative treatment for acute, initial anterior shoulder dislocations. Am. J. Sports Med. 22:589–594, 1994.CrossRefPubMedGoogle Scholar
  3. 3.
    Baker, C. L., J. W. Uribe, and C. Whitman. Arthroscopic evaluation of acute initial anterior shoulder dislocations. Am. J. Sports Med. 18:25–28, 1990.CrossRefPubMedGoogle Scholar
  4. 4.
    Bigliani, L. U., R. G. Pollock, L. J. Soslowsky, E. L. Flatow, R. J. Pawluk, and V. C. Mow. Tensile properties of the inferior glenohumeral ligament. J. Orthop. Res. 10:187–197, 1992.CrossRefPubMedGoogle Scholar
  5. 5.
    Boardman, N. D., R. E. Debski, J. J. Warner, E. Taskiran, L. Maddox, A. B. Imhoff, F. H. Fu, and S. L.-Y. Woo. Tensile properties of the superior glenohumeral and coracohumeral ligaments. J. Shoulder Elbow Surg. 5:249–254, 1996.CrossRefPubMedGoogle Scholar
  6. 6.
    Brenneke, S. L., J. Reid, R. P. Ching, and D. L. Wheeler. Glenohumeral kinematics and capsulo-ligamentous strain resulting from laxity exams. Clin. Biomech. 15:735–742, 2000.CrossRefGoogle Scholar
  7. 7.
    Burkart, A. C., and R. E. Debski. Anatomy and function of the glenohumeral ligaments in anterior shoulder instability. Clin. Orthop. Relat. Res. 400:32–39, 2002.CrossRefPubMedGoogle Scholar
  8. 8.
    Burkart, A., R. E. Debski, V. Musahl, and P. J. McMahon. Glenohumeral translations are only partially restored after repair of the type II SLAP lesion. Am. J. Sports Med. 31:56–63, 2003.PubMedGoogle Scholar
  9. 9.
    Caspari, R. B. Arthroscopic reconstruction for anterior shoulder instability. Tech. Orthopaed. 3:59–66, 1988.Google Scholar
  10. 10.
    Cave, E., J. Burke, and R. Boyd. Trauma Management. Chicago, IL: Year Book Medical Publishers, p. 437, 1974.Google Scholar
  11. 11.
    Chen, S., P. S. Haen, J. Walton, and G. A. Murrell. The effects of thermal capsular shrinkage on the outcomes of arthroscopic stabilization for primary anterior shoulder instability. Am. J. Sports Med. 33:705–711, 2005.CrossRefPubMedGoogle Scholar
  12. 12.
    Debski, R. E., S. M. Moore, J. L. Mercer, M. S. Sacks, and P. J. McMahon. The collagen fibers of the anteroinferior capsulolabrum have multiaxial orientation to resist shoulder dislocation. J. Shoulder Elbow Surg. 12:247–252, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Debski, R. E., J. A. Weiss, W. J. Newman, S. M. Moore, and P. J. McMahon. Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination. J. Shoulder Elbow Surg. 14:24S–31S, 2005.CrossRefPubMedGoogle Scholar
  14. 14.
    Debski, R. E., E. K. Wong, S. L.-Y. Woo, M. Sakane, F. H. Fu, and J. J. Warner. In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. J. Orthop. Res. 17:769–776, 1999.CrossRefPubMedGoogle Scholar
  15. 15.
    Deutsch, A., J. E. Barber, D. T. Davy, and B. N. Victoroff. Anterior-inferior capsular shift of the shoulder: a biomechanical comparison of glenoid-based versus humeral-based shift strategies. J. Shoulder Elbow Surg. 10:340–352, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    Ellis, B. J., R. E. Debski, S. M. Moore, P. J. McMahon, and J. A. Weiss. Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex. J. Biomech. 40:603–612, 2007.CrossRefPubMedGoogle Scholar
  17. 17.
    Field, L. D., D. J. Bokor, and F. H. Savoie, 3rd. Humeral and glenoid detachment of the anterior inferior glenohumeral ligament: a cause of anterior shoulder instability. J. Shoulder Elbow Surg. 6:6–10, 1997.CrossRefPubMedGoogle Scholar
  18. 18.
    Fischer, K. J., T. T. Manson, H. J. Pfaeffle, M. M. Tomaino, and S. L. Woo. A method for measuring joint kinematics designed for accurate registration of kinematic data to models constructed from CT data. J. Biomech. 34:377–383, 2001.CrossRefPubMedGoogle Scholar
  19. 19.
    Gardiner, J. C., and J. A. Weiss. Simple shear testing of parallel-fibered planar soft tissues. J. Biomech. 123:1–5, 2001.CrossRefGoogle Scholar
  20. 20.
    Gardiner, J. C., and J. A. Weiss. Subject-specific finite element models can predict strain in the human medial collateral ligament during valgus knee loading. J. Orthop. Res. 21:1098–1106, 2003.CrossRefPubMedGoogle Scholar
  21. 21.
    Hawkins, R. J., and N. G. Mohtadi. Controversy in anterior shoulder instability. Clin. Orthop. Relat. Res. 272:152–161, 1991.PubMedGoogle Scholar
  22. 22.
    Hughes, T. J. R., and W. K. Liu. Nonlinear finite element analysis of shells: part I. Two-dimensional shells. Comput. Methods Appl. Mech. Eng. 27:167–181, 1981.CrossRefGoogle Scholar
  23. 23.
    Hughes, T. J. R., and W. K. Liu. Nonlinear finite element analysis of shells: part II. Three-dimensional shells. Comput. Methods Appl. Mech. Eng. 27:331–362, 1981.CrossRefGoogle Scholar
  24. 24.
    Itoi, E., J. J. Grabowski, B. F. Morrey, and K. N. An. Capsular properties of the shoulder. Tohoku J. Exp. Med. 171:203–210, 1993.CrossRefPubMedGoogle Scholar
  25. 25.
    Lee, T. Q., J. Dettling, M. D. Sandusky, and P. J. McMahon. Age related biomechanical properties of the glenoid-anterior band of the inferior glenohumeral ligament-humerus complex. Clin. Biomech. 14:471–476, 1999.CrossRefGoogle Scholar
  26. 26.
    Levine, W. N., L. U. Bigliani, and C. S. Ahmad. Thermal capsulorrhaphy. Orthopedics 27:823–826, 2004.PubMedGoogle Scholar
  27. 27.
    Maker, B. N. Rigid Bodies for Metal Forming Analysis with NIKE3D. University of California, Lawrence Livermore Laboratory, 1995, pp. 1–8.Google Scholar
  28. 28.
    Maker, B. N., R. M. Ferencz, and J. O. Hallquist, NIKE3D: A Nonlinear, Implicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics. Lawrence Livermore National Laboratory, 1990.Google Scholar
  29. 29.
    Malicky, D. M., J. E. Kuhn, J. C. Frisancho, S. R. Lindholm, J. A. Raz, and L. J. Soslowsky. Neer Award 2001: nonrecoverable strain fields of the anteroinferior glenohumeral capsule under subluxation. J. Shoulder Elbow Surg. 11:529–540, 2002.CrossRefPubMedGoogle Scholar
  30. 30.
    Malicky, D. M., L. J. Soslowsky, J. E. Kuhn, M. J. Bey, C. M. Mouro, J. A. Raz, and C. A. Liu. Total strain fields of the antero-inferior shoulder capsule under subluxation: a stereoradiogrammetric study. J. Biomech. Eng. 123:425–431, 2001.CrossRefPubMedGoogle Scholar
  31. 31.
    Matthies, H., and G. Strang. The solution of nonlinear finite element equations. Int. J. Numer. Methods Eng. 14:1613–1626, 1979.CrossRefGoogle Scholar
  32. 32.
    Moore, S. M., P. J. McMahon, E. Azemi, and R. E. Debski. Bi-directional mechanical properties of the posterior region of the glenohumeral capsule. J. Biomech. 38:1365–1369, 2005.CrossRefPubMedGoogle Scholar
  33. 33.
    Moore, S. M., P. J. McMahon, and R. E. Debski. Bi-directional mechanical properties of the axillary pouch of the glenohumeral capsule: implications for surgical repair. J. Biomech. Eng. 126:284–288, 2004.CrossRefPubMedGoogle Scholar
  34. 34.
    Moore, S. M., J. H. Stehle, E. J. Rainis, P. J. McMahon, and R. E. Debski. The current anatomical description of the inferior glenohumeral ligament does not correlate with its functional role in positions of external rotation. J. Orthop. Res. 26:1598–1604, 2008.CrossRefPubMedGoogle Scholar
  35. 35.
    Morgan, C. D., and A. B. Bodenstab. Arthroscopic Bankart suture repair: technique and early results. Arthroscopy 3:111–122, 1987.PubMedCrossRefGoogle Scholar
  36. 36.
    Novotny, J. E., B. D. Beynnon, and C. E. Nichols. Modeling the stability of the human glenohumeral joint during external rotation. J. Biomech. 33:345–354, 2000.CrossRefPubMedGoogle Scholar
  37. 37.
    Rainis, E. J., S. A. Maas, H. B. Henninger, P. J. McMahon, J. A. Weiss, and R. E. Debski. Material properties of the axillary pouch of the glenohumeral capsule: Is isotropic material symmetry appropriate? J. Biomech. Eng. 131:031007, 2009.CrossRefPubMedGoogle Scholar
  38. 38.
    Simo, J. C. On the dynamics in space of rods undergoing large motions: a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66:125–161, 1988.CrossRefGoogle Scholar
  39. 39.
    Simo, J. C., and T. J. R. Hughes. Computational Inelasticity. New York: Springer, 1998.Google Scholar
  40. 40.
    Speer, K. P., X. Deng, P. A. Torzilli, D. A. Altchek, and R. F. Warren. Strategies for an anterior capsular shift of the shoulder. A biomechanical comparison. Am. J. Sports Med. 23:264–269, 1995.CrossRefPubMedGoogle Scholar
  41. 41.
    Sperber, A., P. Hamberg, J. Karlsson, L. Sward, and T. Wredmark. Comparison of an arthroscopic and an open procedure for posttraumatic instability of the shoulder: a prospective, randomized multicenter study. J. Shoulder Elbow Surg. 10:105–108, 2001.CrossRefPubMedGoogle Scholar
  42. 42.
    Ticker, J. B., L. U. Bigliani, L. J. Soslowsky, R. J. Pawluk, E. L. Flatow, and V. C. Mow. Inferior glenohumeral ligament: geometric and strain-rate dependent properties. J. Shoulder Elbow Surg. 5:269–279, 1996.CrossRefPubMedGoogle Scholar
  43. 43.
    Warren, R. F. Subluxation of the shoulder in athletes. Clin. Sports Med. 2:339–354, 1983.PubMedGoogle Scholar
  44. 44.
    Weiss, J. A., and J. C. Gardiner. Computational modeling of ligament mechanics. Crit. Rev. Biomed. Eng. 29:303–371, 2001.PubMedGoogle Scholar
  45. 45.
    Weiss, J. A., J. C. Gardiner, and C. Bonifasi-Lista. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J. Biomech. 35:943–950, 2002.CrossRefPubMedGoogle Scholar
  46. 46.
    Weiss, J. A., B. N. Maker, and S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135:107–128, 1996.CrossRefGoogle Scholar
  47. 47.
    Weiss, K. S., and F. H. Savoie, 3rd. Recent advances in arthroscopic repair of traumatic anterior glenohumeral instability. Clin. Orthop. Relat. Res. 400:117–122, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Susan M. Moore
    • 1
  • Benjamin Ellis
    • 2
  • Jeffrey A. Weiss
    • 2
  • Patrick J. McMahon
    • 1
  • Richard E. Debski
    • 1
  1. 1.Musculoskeletal Research Center, Department of BioengineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations