Annals of Biomedical Engineering

, Volume 38, Issue 2, pp 456–468 | Cite as

Purkinje-mediated Effects in the Response of Quiescent Ventricles to Defibrillation Shocks

  • Patrick M. BoyleEmail author
  • Makarand Deo
  • Gernot Plank
  • Edward J. Vigmond


In normal cardiac function, orderly activation of the heart is facilitated by the Purkinje system (PS), a specialized network of fast-conducting fibers that lines the ventricles. Its role during ventricular defibrillation remains unelucidated. Physical characteristics of the PS make it a poor candidate for direct electrical observation using contemporary experimental techniques. This study uses a computer modeling approach to assess contributions by the PS to the response to electrical stimulation. Normal sinus rhythm was simulated and epicardial breakthrough sites were distributed in a manner consistent with experimental results. Defibrillation shocks of several strengths and orientations were applied to quiescent ventricles, with and without PS, and electrical activation was analyzed. All shocks induced local polarizations in PS branches parallel to the field, which led to the rapid spread of excitation through the network. This produced early activations at myocardial sites where tissue was unexcited by the shock and coupled to the PS. Shocks along the apico-basal axis of the heart resulted in a significant abbreviation of activation time when the PS was present; these shocks are of particular interest because the fields generated by internal cardioverter defibrillators tend to have a strong component in the same direction. The extent of PS-induced changes, both temporal and spatial, was constrained by the amount of shock-activated myocardium. Increasing field strength decreased the transmission delay between PS and ventricular tissue at Purkinje-myocardial junctions (PMJs), but this did not have a major effect on the organ-level response. Weaker shocks directly affect a smaller volume of myocardial tissue but easily excite the PS, which makes the PS contribution to far field excitation more substantial than for stronger shocks.


Computer modeling Purkinje system Defibrillation Finite element method Bidomain equations 



This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Alberta Ingenuity Fund, the Mathematics of Information Technology and Complex Systems NCE, and the Austria Science Fund FWF (Grant F3210-N18.)


  1. 1.
    Adgey, A. A. J., M. S. Spence, and S. J. Walsh. Theory and practice of defibrillation: (2) defibrillation for ventricular fibrillation. Heart 91:118–125, 2005.CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson, C., N. Trayanova, and K. Skouibine. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization. J. Cardiovasc. Electrophysiol. 11:1386–1396, 2000.CrossRefPubMedGoogle Scholar
  3. 3.
    Ashihara, T., and N. Trayanova. Asymmetry in membrane responses to electric shocks: insights from bidomain simulations. Biophys. J. 87:2271–2282, 2004.CrossRefPubMedGoogle Scholar
  4. 4.
    Aslanidi, O. V., P. Stewart, M. R. Boyett, and H. Zhang. Optimal velocity and safety of discontinuous conduction through the heterogeneous Purkinje-ventricular junction. Biophys. J. 97:20–39, 2009.CrossRefPubMedGoogle Scholar
  5. 5.
    Azarov, J. E., D. N. Shmakov, V. A. Vityazev, I. M. Roshchevskaya, N. V. Arteyeva, S. N. Kharin, and M. P. Roshchevsky. Ventricular repolarization pattern under heart cooling in the rabbit. Acta Physiol. (Oxf) 193:129–138, 2008.CrossRefGoogle Scholar
  6. 6.
    Berenfeld, O., and J. Jalife. Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ. Res. 82:1063–1077, 1998.PubMedGoogle Scholar
  7. 7.
    Cabo, C., and R. C. Barr. Unidirectional block in a computer model of partially coupled segments of cardiac Purkinje tissue. Ann. Biomed. Eng. 21:633–644, 1993.CrossRefPubMedGoogle Scholar
  8. 8.
    Coghlan, H., A. Coghlan, G. Buckberg, and J. Cox. The electrical spiral of the heart: its role in the helical continuum. The hypothesis of the anisotropic conducting matrix. Eur. J. Cardiothorac. Surg. 29:S178–S187, 2006.CrossRefPubMedGoogle Scholar
  9. 9.
    DeBruin, K., and W. Krassowska. Modeling electroporation in a single cell, I. Effects of field strength and rest potential. Biophys. J. 77:1213–1224, 1999.Google Scholar
  10. 10.
    DiFrancesco, D., and D. Noble. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 307:353–398, 1985.CrossRefPubMedGoogle Scholar
  11. 11.
    Dosdall, D. J., K.-A. Cheng, J. Huang, J. S. Allison, J. D. Allred, W. M. Smith, and R. E. Ideker. Transmural and endocardial Purkinje activation in pigs before local myocardial activation after defibrillation shocks. Heart Rhythm 4:758–765, 2007.CrossRefPubMedGoogle Scholar
  12. 12.
    Dosdall, D. J., P. B. Tabereaux, J. J. Kim, G. P. Walcott, J. M. Rogers, C. R. Killingsworth, J. Huang, P. G. Robertson, W. M. Smith, and R. E. Ideker. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs. Am. J. Physiol. Heart Circ. Physiol. 295:H883–H889, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Efimov, I. R., Y. Cheng, D. R. V. Wagoner, T. Mazgalev, and P. J. Tchou. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ. Res. 82:918–925, 1998.PubMedGoogle Scholar
  14. 14.
    Fedorov, V. V., V. P. Nikolski, and I. R. Efimov. Effect of electroporation on cardiac electrophysiology. Methods Mol. Biol. 423:433–448, 2008.CrossRefPubMedGoogle Scholar
  15. 15.
    Fotuhi, P. C., A. E. Epstein, and R. E. Ideker. Energy levels for defibrillation: what is of real clinical importance? Am. J. Cardiol. 83:24D–33D, 1999.CrossRefPubMedGoogle Scholar
  16. 16.
    Han, W., W. Bao, Z. Wang, and S. Nattel. Comparison of ion-channel subunit expression in canine cardiac Purkinje fibers and ventricular muscle. Circ. Res. 91:790–797, 2002.CrossRefPubMedGoogle Scholar
  17. 17.
    Han, W., Z. Wang, and S. Nattel. A comparison of transient outward currents in canine cardiac Purkinje cells and ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 279:H466–H474, 2000.PubMedGoogle Scholar
  18. 18.
    Han, W., L. Zhang, G. Schram, and S. Nattel. Properties of potassium currents in Purkinje cells of failing human hearts. Am. J. Physiol. Heart Circ. Physiol. 283:H2495–H2503, 2002.PubMedGoogle Scholar
  19. 19.
    Hooke, N., C. Henriquez, P. Lanzkron, and D. Rose. Linear algebraic transformations of the bidomain equations: implications for numerical methods. Math. Biosci. 120:127–145, 1994.CrossRefPubMedGoogle Scholar
  20. 20.
    Huelsing, D. J., K. W. Spitzer, J. M. Cordeiro, and A. E. Pollard. Conduction between isolated rabbit Purkinje and ventricular myocytes coupled by a variable resistance. Am. J. Physiol. 274:H1163–H1173, 1998PubMedGoogle Scholar
  21. 21.
    Jolley, M., J. Stinstra, S. Pieper, R. Macleod, D. H. Brooks, F. Cecchin, and J. K. Triedman. A computer modeling tool for comparing novel ICD electrode orientations in children and adults. Heart Rhythm 5:565–572, 2008.CrossRefPubMedGoogle Scholar
  22. 22.
    Kerckhoffs, R. C. P., O. P. Faris, P. H. M. Bovendeerd, F. W. Prinzen, K. Smits, E. R. McVeigh, and T. Arts. Timing of depolarization and contraction in the paced canine left ventricle: model and experiment. J. Cardiovasc. Electrophysiol. 14:S188–S195, 2003.CrossRefPubMedGoogle Scholar
  23. 23.
    Kinst, T. F., M. O. Sweeney, J. L. Lehr, and S. R. Eisenberg. Simulated internal defibrillation in humans using an anatomically realistic three-dimensional finite element model of the thorax. J. Cardiovasc. Electrophysiol. 8:537–547, 1997.CrossRefPubMedGoogle Scholar
  24. 24.
    Li, H. G., D. L. Jones, R. Yee, and G. J. Klein. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia. J. Am. Coll. Cardiol. 22:607–614, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Loughrey, C. M., G. L. Smith, and K. E. MacEachern. Comparison of Ca2+ release and uptake characteristics of the sarcoplasmic reticulum in isolated horse and rabbit cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 287:H1149–H1159, 2004.CrossRefPubMedGoogle Scholar
  26. 26.
    Lu, H. R., R. Marin, A. Saels, and F. D. Clerck. Species plays an important role in drug-induced prolongation of action potential duration and early afterdepolarizations in isolated Purkinje fibers. J. Cardiovasc. Electrophysiol. 12:93–102, 2001.CrossRefPubMedGoogle Scholar
  27. 27.
    McNary, T. G., K. Sohn, B. Taccardi, and F. B. Sachse. Experimental and computational studies of strain-conduction velocity relationships in cardiac tissue. Prog. Biophys. Mol. Biol. 97:383–400, 2008.CrossRefPubMedGoogle Scholar
  28. 28.
    Morley, G. E., S. B. Danik, S. Bernstein, Y. Sun, G. Rosner, D. E. Gutstein, and G. I. Fishman. Reduced intercellular coupling leads to paradoxical propagation across the Purkinje-ventricular junction and aberrant myocardial activation. Proc. Natl Acad. Sci. USA 102:4126–4129, 2005.CrossRefPubMedGoogle Scholar
  29. 29.
    Nygren, A., R. B. Clark, D. D. Belke, C. Kondo, W. R. Giles, and F. X. Witkowski. Voltage-sensitive dye mapping of activation and conduction in adult mouse hearts. Ann. Biomed. Eng. 28:958–967, 2000.CrossRefPubMedGoogle Scholar
  30. 30.
    Nygren, A., C. Kondo, R. B. Clark, and W. R. Giles. Voltage-sensitive dye mapping in Langendorff-perfused rat hearts. Am. J. Physiol. Heart Circ. Physiol. 284:H892–H902, 2003.PubMedGoogle Scholar
  31. 31.
    Oosthoek, P. W., S. Virgh, W. H. Lamers, and A. F. Moorman. Immunohistochemical delineation of the conduction system. II: the atrioventricular node and Purkinje fibers. Circ. Res. 73:482–491, 1993.PubMedGoogle Scholar
  32. 32.
    Overholt, E. D., R. W. Joyner, R. D. Veenstra, D. Rawling, and R. Wiedmann. Unidirectional block between Purkinje and ventricular layers of papillary muscles. Am. J. Physiol. 247:H584–H595, 1984.PubMedGoogle Scholar
  33. 33.
    Plank, G., L. J. Leon, S. Kimber, and E. J. Vigmond. Defibrillation depends on conductivity fluctuations and the degree of disorganization in reentry patterns. J. Cardiovasc. Electrophysiol. 16:205–216, 2005.CrossRefPubMedGoogle Scholar
  34. 34.
    Potse, M., B. Dub, J. Richer, A. Vinet, and R. M. Gulrajani. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53:2425–2435, 2006.CrossRefPubMedGoogle Scholar
  35. 35.
    Puglisi, J., F. Wang, and D. Bers. Modeling the isolated cardiac myocyte. Prog. Biophys. Mol. Biol. 85:163–178, 2004.CrossRefPubMedGoogle Scholar
  36. 36.
    Qin, H., J. Huang, J. M. Rogers, G. P. Walcott, D. L. Rollins, W. M. Smith, and R. E. Ideker. Mechanisms for the maintenance of ventricular fibrillation: the nonuniform dispersion of refractoriness, restitution properties, or anatomic heterogeneities? J. Cardiovasc. Electrophysiol. 16:888–897, 2005.CrossRefPubMedGoogle Scholar
  37. 37.
    Ramanathan, C., P. Jia, R. Ghanem, K. Ryu, and Y. Rudy. Activation and repolarization of the normal human heart under complete physiological conditions. Proc. Natl Acad. Sci. USA 103:6309–6314, 2006.CrossRefPubMedGoogle Scholar
  38. 38.
    Rentschler, S., D. M. Vaidya, H. Tamaddon, K. Degenhardt, D. Sassoon, G. E. Morley, J. Jalife, and G. I. Fishman. Visualization and functional characterization of the developing murine cardiac conduction system. Development 128:1785–1792, 2001.PubMedGoogle Scholar
  39. 39.
    Roth, B. J., and J. P. Wikswo. Electrical stimulation of cardiac tissue: a bidomain model with active membrane properties. IEEE Trans. Biomed. Eng. 41:232–240, 1994.CrossRefPubMedGoogle Scholar
  40. 40.
    Schafferhofer-Steltzer, I., E. Hofer, D. J. Huelsing, S. P. Bishop, and A. E. Pollard. Contributions of Purkinje-myocardial coupling to suppression and facilitation of early afterdepolarization-induced triggered activity. IEEE Trans. Biomed. Eng. 52:1522–1531, 2005.CrossRefPubMedGoogle Scholar
  41. 41.
    Stewart, P., O. V. Aslanidi, D. Noble, P. J. Noble, M. R. Boyett, and H. Zhang. Mathematical models of the electrical action potential of Purkinje fibre cells. Philos. Trans. A Math. Phys. Eng. Sci. 367:2225–2255, 2009.CrossRefPubMedGoogle Scholar
  42. 42.
    Streeter, D. D., R. N. Vaishnav, D. J. Patel, H. M. Spotnitz, J. Ross, and E. H. Sonnenblick. Stress distribution in the canine left ventricle during diastole and systole. Biophys. J. 10:345–363, 1970.CrossRefPubMedGoogle Scholar
  43. 43.
    Sung, D., J. H. Omens, and A. D. McCulloch. Model-based analysis of optically mapped epicardial activation patterns and conduction velocity. Ann. Biomed. Eng. 28:1085–1092, 2000.CrossRefPubMedGoogle Scholar
  44. 44.
    Tabereaux, P. B., G. P. Walcott, J. M. Rogers, J. Kim, D. J. Dosdall, P. G. Robertson, C. R. Killingsworth, W. M. Smith, and R. E. Ideker. Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model. Circulation 116:1113–1119, 2007.CrossRefPubMedGoogle Scholar
  45. 45.
    ten Tusscher, K. H., and A. V. Panfilov. Modelling of the ventricular conduction system. Prog. Biophys. Mol. Biol. 96:152–170, 2008.CrossRefGoogle Scholar
  46. 46.
    Tranum-Jensen, J., A. A. Wilde, J. T. Vermeulen, and M. J. Janse. Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts. Circ. Res. 69:429–437, 1991.PubMedGoogle Scholar
  47. 47.
    Trayanova, N., J. Eason, and F. Aguel. Computer simulations of cardiac defibrillation: a look inside the heart. Comput. Visual. Sci. 4:259–270, 2002.CrossRefGoogle Scholar
  48. 48.
    Vetter, F., and A. McCulloch. Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Prog. Biophys. Mol. Biol. 69:157–183, 1998.CrossRefPubMedGoogle Scholar
  49. 49.
    Vigmond, E. J., and C. Clements. Construction of a computer model to investigate sawtooth effects in the Purkinje system. IEEE Trans. Biomed. Eng. 54:389–399, 2007.CrossRefGoogle Scholar
  50. 50.
    Vigmond, E. J., C. Clements, D. M. McQueen, and C. S. Peskin. Effect of bundle branch block on cardiac output: a whole heart simulation study. Prog. Biophys. Mol. Biol. 97:520–542, 2008.CrossRefPubMedGoogle Scholar
  51. 51.
    Wiedmann, R. T., R. C. Tan, and R. W. Joyner. Discontinuous conduction at Purkinje-ventricular muscle junction. Am. J. Physiol. 271:H1507–H1516, 1996.PubMedGoogle Scholar
  52. 52.
    Wiegerinck, R. F., A. O. Verkerk, C. N. Belterman, T. A. B. van Veen, A. Baartscheer, T. Opthof, R. Wilders, J. M. T. de Bakker, and R. Coronel. Larger cell size in rabbits with heart failure increases myocardial conduction velocity and QRS duration. Circulation 113:806–813, 2006.CrossRefPubMedGoogle Scholar
  53. 53.
    Wu, M. H., M. J. Su, and S. S. Sun. Electrophysiological profile after inward rectifier K channel blockade by barium in isolated rabbit hearts. Altered repolarization and unmasked decremental conduction property. Europace 1:85–95, 1999.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhou, X., J. P. Daubert, P. D. Wolf, W. M. Smith, and R. E. Ideker. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ. Res. 72:145–160, 1993.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Patrick M. Boyle
    • 1
    Email author
  • Makarand Deo
    • 1
  • Gernot Plank
    • 2
  • Edward J. Vigmond
    • 1
  1. 1.Department of Electrical & Computer EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Institute of BiophysicsMedical University of GrazGrazAustria

Personalised recommendations