Annals of Biomedical Engineering

, Volume 38, Issue 1, pp 109–117 | Cite as

Mathematical Modeling of Flow-Generated Forces in an In Vitro System of Cardiac Valve Development

  • Stefanie V. Biechler
  • Jay D. Potts
  • Michael J. Yost
  • Lorain Junor
  • Richard L. Goodwin
  • John W. WeidnerEmail author


Heart valve defects are the most common cardiac defects. Therefore, defining the mechanisms of cardiac valve development is critical to our understanding and treatment of these disorders. At early stages of embryonic cardiac development, the heart begins as a simple tube that then becomes constricted into separate atrial and ventricular regions by the formation of small, mound-like structures, called atrioventricular (AV) cushions. As valve development continues, these mounds fuse and then elongate into valve leaflets. A longstanding hypothesis proposes that blood flow-generated shear stress and pressure are critical in shaping the cushions into leaflets. Here we show results from a two-dimensional mathematical model that simulates the forces created by blood flow present in a developing chick heart and in our in vitro, tubular model system. The model was then used to predict flow patterns and the resulting forces in the in vitro system. The model indicated that forces associated with shear stress and pressure have comparable orders of magnitude and collectively produce a rotational profile around the cushion in the direction of flow and leaflet growth. Further, it was concluded that the replication of these forces on a cushion implanted in our tubular in vitro system is possible. Overall, the two-dimensional, mathematical model provides insight into the forces that occur during early cardiac valve elongation.


Heart development Shear stress Atrioventricular valve 



The authors would like to acknowledge The University of South Carolina Magellan Scholars Program for providing funding of the research project. Further gratitude is extended toward The National Institute of Health, Department of Health and Human Services for providing funding under grant number R01HL086856. Finally, the authors thank Dr. Francis Gadala-Maria and Dr. Arash Kheradvar for their helpful comments.


  1. 1.
    Armstrong, E. J., and J. Bischoff. Heart valve development: endothelial cell signaling and differentiation. Circ. Res. 95:459–470, 2004.CrossRefPubMedGoogle Scholar
  2. 2.
    Bartman, T., and J. Hove. Mechanics and function in heart morphogenesis. Dev. Dyn. 233:373–381, 2005.CrossRefPubMedGoogle Scholar
  3. 3.
    Butcher, J. T., T. C. McQuinn, D. Sedmera, D. Turner, and R. R. Markwald. Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition. Circ. Res. 100:1503–1511, 2007.CrossRefPubMedGoogle Scholar
  4. 4.
    Cheng, R., Y. G. Lai, and K. B. Chandran. Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32(11):1471–1483, 2004.CrossRefPubMedGoogle Scholar
  5. 5.
    De Lange, F. J., A. F. Moorman, R. H. Anderson, J. Manner, A. T. Soufan, C. De Gier-De Vries, M. D. Schneider, S. Webb, M. J. Van Den Hoff, and V. M. Christoffels. Lineage and morphogenetic analysis of the cardiac valves. Circ. Res. 95:645–654, 2004.CrossRefPubMedGoogle Scholar
  6. 6.
    Ge, L., C. S. Jones, F. Stiropoulos, T. M. Healy, and A. P. Yoganathan. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J. Biomech. Eng. 125:709–718, 2003.CrossRefPubMedGoogle Scholar
  7. 7.
    Gonzalez-Sanchez, A., and D. Bader. In vitro analysis of cardiac progenitor cell differentiation. Dev. Biol. 139:197–209, 1990.CrossRefPubMedGoogle Scholar
  8. 8.
    Goodwin, R. L., T. Nesbitt, R. L. Price, J. C. Wells, M. J. Yost, and P. D. Potts. Three-dimensional model system of valvulogenesis. Dev. Dyn. 233:122–129, 2005.CrossRefPubMedGoogle Scholar
  9. 9.
    Hall, C. E., R. Hurtado, K. W. Hewett, M. Shulimovich, C. P. Poma, M. Reckova, C. Justus, D. J. Pennisi, K. Tobita, D. Sedmera, R. G. Gourdie, and T. Miwawa. Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Development 131:581–592, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Hamburger, V., and H. L. Hamilton. A series of normal stages in the development of the chick embryo. Dev. Dyn. 195:231–272, 1951.Google Scholar
  11. 11.
    Hove, J. R., R. W. Koster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177, 2003.CrossRefPubMedGoogle Scholar
  12. 12.
    Hsia, T. Y., F. Migliavacca, S. Pittaccio, A. Radaelli, G. Dubini, G. Pennati, and M. De Leval. Computational fluid dynamic study of flow optimization in realistic models of the total cavopulmonary connections. J. Surg. Res. 116:305–313, 2004.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu, A., S. Rugonyi, J. O. Pentecost, and K. L. Thornburg. Finite element modeling of blood flow-induced mechanical forces in the outflow tract of chick embryonic hearts. Comput. Struct. 85:727–738, 2007.CrossRefGoogle Scholar
  14. 14.
    McQuinn, T. C., M. Bratoeva, A. deAlmeida, M. Remond, R. P. Thompson, and D. Sedmera. High-frequency ultrasonographic imaging of avian cardiovascular development. Dev. Dyn. 236:3503–3513, 2007.CrossRefPubMedGoogle Scholar
  15. 15.
    Potts, J. D., E. B. Vincent, R. B. Runyan, and D. L. Weeks. Sense and antisense TGF beta 3 mRNA levels correlate with cardiac valve induction. Dev. Dyn. 193:340–345, 1992.PubMedGoogle Scholar
  16. 16.
    Rechova, M., C. Rosengarten, A. deAlmedia, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera. Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ. Res. 93(1):77–85, 2003.CrossRefGoogle Scholar
  17. 17.
    Rodbard, S. Vascular modifications induced by flow. Am. Heart J. 51(6):926–942, 1956.CrossRefPubMedGoogle Scholar
  18. 18.
    Runyan, R. B., and R. R. Markwald. Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev. Biol. 95(1):108–114, 1983.CrossRefPubMedGoogle Scholar
  19. 19.
    Santhanakrishnan, A., N. Nguyen, J. G. Cox, and L. A. Miller. Flow within models of the vertebrate embryonic heart. J. Theor. Biol. 259:449–461, 2009.CrossRefPubMedGoogle Scholar
  20. 20.
    Schroeder, J. A., L. F. Jackson, D. C. Lee, and T. D. Camenisch. Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J. Mol. Med. 81:392–403, 2003.CrossRefPubMedGoogle Scholar
  21. 21.
    Stekelenburg De Vos, S., N. T. Ursem, W. C. Hop, J. W. Wladimiroff, A. C. Gittenberger De Groot, and R. E. Poelmann. Acutely altered hemodynamics following venous obstruction in the early chick embryo. J. Exp. Biol. 206:1051–1057, 2003.CrossRefPubMedGoogle Scholar
  22. 22.
    Taber, L. A. A model for aortic growth based on fluid shear and fiber stresses. J. Biomech. Eng. 120(3):348–354, 1998.CrossRefPubMedGoogle Scholar
  23. 23.
    Taber, L. A., J. Zhang, and R. Perucchio. Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. J. Biomech. Eng. 129:441–449, 2007.CrossRefPubMedGoogle Scholar
  24. 24.
    Van der Heiden, K., B. C. W. Groenendijk, B. P. Hierck, B. Hogers, H. K. Koerten, A. M. Mommaas, A. C. Gittenberger-de Groot, and R. E. Poelmann. Monocilia on chicken embryonic endocardium in low shear stress areas. Dev. Dyn. 235:19–28, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Stefanie V. Biechler
    • 1
  • Jay D. Potts
    • 2
  • Michael J. Yost
    • 2
  • Lorain Junor
    • 2
  • Richard L. Goodwin
    • 2
  • John W. Weidner
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA
  2. 2.Department of Cell Biology and AnatomyUniversity of South Carolina School of MedicineColumbiaUSA

Personalised recommendations