Annals of Biomedical Engineering

, Volume 38, Issue 1, pp 2–20 | Cite as

Synthetic Materials in the Study of Cell Response to Substrate Rigidity



While it has long been understood that cells can sense and respond to a variety of stimuli, including soluble and insoluble factors, light, and externally applied mechanical stresses, the extent to which cells can sense and respond to the mechanical properties of their environment has only recently begun to be studied. Cell response to substrate stiffness has been suggested to play an important role in processes ranging from developmental morphogenesis to the pathogenesis of disease states and may have profound implications for cell and tissue culture and tissue engineering. Given the importance of this phenomenon, there is a clear need for systems for cell study in which substrate mechanics can be carefully defined and varied independently of biochemical and other signals. This review will highlight past work in the field of cell response to substrate rigidity as well as areas for future study.


Substrate rigidity Substrate stiffness Durotaxis 


  1. 1.
    Abe, H., K. Hayashi, and M. Sato. Data book on mechanical properties of living cells, tissues, and organs. Tokyo: Springer-Verlag, p. 436, 1996.Google Scholar
  2. 2.
    An, K. N., Y. L. Sun, and Z. P. Luo. Flexibility of type I collagen and mechanical property of connective tissue. Biorheology 41:239–246, 2004.PubMedGoogle Scholar
  3. 3.
    Balgude, A. P., X. Yu, A. Szymanski, and R. V. Bellamkonda. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22:1077–1084, 2001.CrossRefPubMedGoogle Scholar
  4. 4.
    Ben-Ze’ev, A., G. S. Robinson, N. L. Bucher, and S. R. Farmer. Cell–cell and cell–matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc. Natl Acad. Sci. USA 85:2161–2165, 1988.CrossRefPubMedGoogle Scholar
  5. 5.
    Beningo, K. A., M. Dembo, and Y. L. Wang. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc. Natl Acad. Sci. USA 101:18024–18029, 2004.CrossRefPubMedGoogle Scholar
  6. 6.
    Boonen, K. J., K. Y. Rosaria-Chak, F. P. Baaijens, D. W. van der Schaft, and M. J. Post. Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am. J. Physiol. Cell. Physiol. 296:C1338–C1345, 2009.CrossRefPubMedGoogle Scholar
  7. 7.
    Boontheekul, T., E. E. Hill, H. J. Kong, and D. J. Mooney. Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Eng. 13:1431–1442, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Bryant, S. J., and K. S. Anseth. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59:63–72, 2002.CrossRefPubMedGoogle Scholar
  9. 9.
    Bryant, S. J., R. J. Bender, K. L. Durand, and K. S. Anseth. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng. 86:747–755, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Bryant, S. J., T. T. Chowdhury, D. A. Lee, D. L. Bader, and K. S. Anseth. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann. Biomed. Eng. 32:407–417, 2004.CrossRefPubMedGoogle Scholar
  11. 11.
    Burton, K., and D. L. Taylor. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385:450–454, 1997.CrossRefPubMedGoogle Scholar
  12. 12.
    Califano, J. P., and C. A. Reinhart-King. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 1:122–132, 2008.CrossRefGoogle Scholar
  13. 13.
    Chen, Q., S. I. Ringleb, A. Manduca, R. L. Ehman, and K. N. An. A finite element model for analyzing shear wave propagation observed in magnetic resonance elastography. J. Biomech. 38:2198–2203, 2005.CrossRefPubMedGoogle Scholar
  14. 14.
    Collin, O., P. Tracqui, A. Stephanou, Y. Usson, J. Clement-Lacroix, and E. Planus. Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility. J. Cell Sci. 119:1914–1925, 2006.CrossRefPubMedGoogle Scholar
  15. 15.
    Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell–matrix adhesions to the third dimension. Science 294:1708–1712, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    Deroanne, C. F., C. M. Lapiere, and B. V. Nusgens. In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc. Res. 49:647–658, 2001.CrossRefPubMedGoogle Scholar
  17. 17.
    Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.CrossRefPubMedGoogle Scholar
  18. 18.
    Engler, A., L. Richert, J. Y. Wong, C. Picart, and D. Discher. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf. Sci. 570:142–154, 2004.CrossRefGoogle Scholar
  19. 19.
    Engler, A. J., C. Carag-Krieger, C. P. Johnson, M. Raab, H. Y. Tang, D. W. Speicher, J. W. Sanger, J. M. Sanger, and D. E. Discher. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121:3794–3802, 2008.CrossRefPubMedGoogle Scholar
  20. 20.
    Engler, A. J., M. A. Griffin, S. Sen, C. G. Bonnemann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166:877–887, 2004.CrossRefPubMedGoogle Scholar
  21. 21.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.CrossRefPubMedGoogle Scholar
  22. 22.
    Flanagan, L. A., Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. Neuroreport 13:2411–2415, 2002.CrossRefPubMedGoogle Scholar
  23. 23.
    Georges, P. C., W. J. Miller, D. F. Meaney, E. S. Sawyer, and P. A. Janmey. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90:3012–3018, 2006.CrossRefPubMedGoogle Scholar
  24. 24.
    Ghosh, K., Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28:671–679, 2007.CrossRefPubMedGoogle Scholar
  25. 25.
    Gomez, M. A. and A. M. Nahum. Biomechanics of bone. In: Accidental Injury: Biomechanics and Prevention, edited by A. M. Nahum and J. W. Melvin. New York: Springer-Verlag, 2002, pp. 206–227.Google Scholar
  26. 26.
    Gray, D. S., J. Tien, and C. S. Chen. Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J. Biomed. Mater. Res. A 66:605–614, 2003.CrossRefPubMedGoogle Scholar
  27. 27.
    Gunn, J. W., S. D. Turner, and B. K. Mann. Adhesive and mechanical properties of hydrogels influence neurite extension. J. Biomed. Mater. Res. A 72:91–97, 2005.CrossRefPubMedGoogle Scholar
  28. 28.
    Guo, W. H., M. T. Frey, N. A. Burnham, and Y. L. Wang. Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90:2213–2220, 2006.CrossRefPubMedGoogle Scholar
  29. 29.
    Haut, R. C. Biomechanics of soft tissue. In: Accidental Injury: Biomechanics and Prevention, edited by A. M. Nahum and J. W. Melvin. New York: Springer-Verlag, 2002, pp. 228–253.Google Scholar
  30. 30.
    Hsiong, S. X., P. Carampin, H. J. Kong, K. Y. Lee, and D. J. Mooney. Differentiation stage alters matrix control of stem cells. J. Biomed. Mater. Res. A 85:145–156, 2008.PubMedGoogle Scholar
  31. 31.
    Ingber, D. E. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116:1397–1408, 2003.CrossRefPubMedGoogle Scholar
  32. 32.
    Ingber, D. E. Mechanical control of tissue morphogenesis during embryological development. Int. J. Dev. Biol. 50:255–266, 2006.CrossRefPubMedGoogle Scholar
  33. 33.
    Ingber, D. E., and J. Folkman. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330, 1989.CrossRefPubMedGoogle Scholar
  34. 34.
    Jacot, J. G., A. D. McCulloch, and J. H. Omens. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95:3479–3487, 2008.CrossRefPubMedGoogle Scholar
  35. 35.
    Jiang, F. X., B. Yurke, B. L. Firestein, and N. A. Langrana. Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann. Biomed. Eng. 36:1565–1579, 2008.CrossRefPubMedGoogle Scholar
  36. 36.
    Jiang, G., A. H. Huang, Y. Cai, M. Tanase, and M. P. Sheetz. Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys. J. 90:1804–1809, 2006.CrossRefPubMedGoogle Scholar
  37. 37.
    Khatiwala, C. B., P. D. Kim, S. R. Peyton, and A. J. Putnam. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24:886–898, 2009.CrossRefPubMedGoogle Scholar
  38. 38.
    Khatiwala, C. B., S. R. Peyton, and A. J. Putnam. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell. Physiol. 290:C1640–C1650, 2006.CrossRefPubMedGoogle Scholar
  39. 39.
    Kong, H. J., T. R. Polte, E. Alsberg, and D. J. Mooney. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl Acad. Sci. USA 102:4300–4305, 2005.CrossRefPubMedGoogle Scholar
  40. 40.
    Kostic, A., C. D. Lynch, and M. P. Sheetz. Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS One 4:e6361, 2009.CrossRefPubMedGoogle Scholar
  41. 41.
    Leach, J. B., X. Q. Brown, J. G. Jacot, P. A. Dimilla, and J. Y. Wong. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4:26–34, 2007.CrossRefPubMedGoogle Scholar
  42. 42.
    Lee, E. Y., G. Parry, and M. J. Bissell. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98:146–155, 1984.CrossRefPubMedGoogle Scholar
  43. 43.
    Li, M. L., J. Aggeler, D. A. Farson, C. Hatier, J. Hassell, and M. J. Bissell. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl Acad. Sci. USA 84:136–140, 1987.CrossRefPubMedGoogle Scholar
  44. 44.
    Li, Z., J. A. Dranoff, E. P. Chan, M. Uemura, J. Sevigny, and R. G. Wells. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 46:1246–1256, 2007.CrossRefPubMedGoogle Scholar
  45. 45.
    Lin, Y. C., and F. Grinnell. Decreased level of PDGF-stimulated receptor autophosphorylation by fibroblasts in mechanically relaxed collagen matrices. J. Cell Biol. 122:663–672, 1993.CrossRefPubMedGoogle Scholar
  46. 46.
    Lindblad, W. J., E. G. Schuetz, K. S. Redford, and P. S. Guzelian. Hepatocellular phenotype in vitro is influenced by biophysical features of the collagenous substratum. Hepatology 13:282–288, 1991.PubMedGoogle Scholar
  47. 47.
    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.CrossRefPubMedGoogle Scholar
  48. 48.
    McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.CrossRefPubMedGoogle Scholar
  49. 49.
    Mih, J. D., and D. J. Tschumperlin. Lung fibroblast behavior is tuned by substrate stiffness. Proc. Am. Thorac. Soc. 5:364–365, 2008.Google Scholar
  50. 50.
    Oakes, P. W., D. C. Patel, N. A. Morin, D. P. Zitterbart, B. Fabry, J. S. Reichner, and J. X. Tang. Neutrophil morphology and migration are affected by substrate elasticity. Blood 114:1387–1395, 2009.CrossRefPubMedGoogle Scholar
  51. 51.
    Oster, G. F., J. D. Murray, and A. K. Harris. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78:83–125, 1983.PubMedGoogle Scholar
  52. 52.
    Park, Y., M. P. Lutolf, J. A. Hubbell, E. B. Hunziker, and M. Wong. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng. 10:515–522, 2004.CrossRefPubMedGoogle Scholar
  53. 53.
    Paszek, M. J., and V. M. Weaver. The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9:325–342, 2004.CrossRefPubMedGoogle Scholar
  54. 54.
    Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.CrossRefPubMedGoogle Scholar
  55. 55.
    Pelham, Jr., R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94:13661–13665, 1997.CrossRefPubMedGoogle Scholar
  56. 56.
    Pellegrin, S., and H. Mellor. Actin stress fibres. J. Cell Sci. 120:3491–3499, 2007.CrossRefPubMedGoogle Scholar
  57. 57.
    Peyton, S. R., P. D. Kim, C. M. Ghajar, D. Seliktar, and A. J. Putnam. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29:2597–2607, 2008.CrossRefPubMedGoogle Scholar
  58. 58.
    Peyton, S. R., and A. J. Putnam. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204:198–209, 2005.CrossRefPubMedGoogle Scholar
  59. 59.
    Peyton, S. R., C. B. Raub, V. P. Keschrumrus, and A. J. Putnam. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27:4881–4893, 2006.CrossRefPubMedGoogle Scholar
  60. 60.
    Polte, T. R., G. S. Eichler, N. Wang, and D. E. Ingber. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am. J. Physiol. Cell. Physiol. 286:C518–C528, 2004.CrossRefPubMedGoogle Scholar
  61. 61.
    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95:6044–6051, 2008.CrossRefPubMedGoogle Scholar
  62. 62.
    Rowlands, A. S., P. A. George, and J. J. Cooper-White. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am. J. Physiol. Cell. Physiol. 295:C1037–C1044, 2008.CrossRefPubMedGoogle Scholar
  63. 63.
    Saez, A., M. Ghibaudo, A. Buguin, P. Silberzan, and B. Ladoux. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104:8281–8286, 2007.CrossRefPubMedGoogle Scholar
  64. 64.
    Saha, K., A. Keung, E. Irwin, Y. Li, L. Little, D. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–4438, 2008.CrossRefPubMedGoogle Scholar
  65. 65.
    Samani, A., J. Zubovits, and D. Plewes. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52:1565–1576, 2007.CrossRefPubMedGoogle Scholar
  66. 66.
    Schlaepfer, D. D., S. K. Mitra, and D. Ilic. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim. Biophys. Acta 1692:77–102, 2004.PubMedGoogle Scholar
  67. 67.
    Semler, E. J., P. A. Lancin, A. Dasgupta, and P. V. Moghe. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol. Bioeng. 89:296–307, 2005.CrossRefPubMedGoogle Scholar
  68. 68.
    Silver, F. H., Y. P. Kato, M. Ohno, and A. J. Wasserman. Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J. Long Term Eff. Med. Implants 2:165–198, 1992.PubMedGoogle Scholar
  69. 69.
    Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93:4453–4461, 2007.CrossRefPubMedGoogle Scholar
  70. 70.
    Stichel, C. C., and H. W. Muller. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res. 294:1–9, 1998.CrossRefPubMedGoogle Scholar
  71. 71.
    Stroka, K. M., and H. Aranda-Espinoza. Neutrophils display biphasic relationship between migration and substrate stiffness. Cell Motil. Cytoskeleton 66:328–341, 2009.CrossRefPubMedGoogle Scholar
  72. 72.
    Teixeira, A. I., S. Ilkhanizadeh, J. A. Wigenius, J. K. Duckworth, O. Inganas, and O. Hermanson. The promotion of neuronal maturation on soft substrates. Biomaterials 30:4567–4572, 2009.CrossRefPubMedGoogle Scholar
  73. 73.
    Tzvetkova-Chevolleau, T., A. Stephanou, D. Fuard, J. Ohayon, P. Schiavone, and P. Tracqui. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29:1541–1551, 2008.CrossRefPubMedGoogle Scholar
  74. 74.
    Wang, H. B., M. Dembo, S. K. Hanks, and Y. Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA 98:11295–11300, 2001.CrossRefPubMedGoogle Scholar
  75. 75.
    Wang, H. B., M. Dembo, and Y. L. Wang. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell. Physiol. 279:C1345–C1350, 2000.PubMedGoogle Scholar
  76. 76.
    Wong, J. Y., A. Velasco, P. Rajagopalan, and Q. Pham. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913, 2003.CrossRefGoogle Scholar
  77. 77.
    Yeh, W. C., P. C. Li, Y. M. Jeng, H. C. Hsu, P. L. Kuo, M. L. Li, P. M. Yang, and P. H. Lee. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 28:467–474, 2002.CrossRefPubMedGoogle Scholar
  78. 78.
    Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.CrossRefPubMedGoogle Scholar
  79. 79.
    Yu, X., and R. V. Bellamkonda. Dorsal root ganglia neurite extension is inhibited by mechanical and chondroitin sulfate-rich interfaces. J. Neurosci. Res. 66:303–310, 2001.CrossRefPubMedGoogle Scholar
  80. 80.
    Zaari, N., P. Rajagopalan, S. K. Kim, A. J. Engler, and J. Y. Wong. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv. Mater. 16:2133–2137, 2004.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  1. 1.Department of BioengineeringRice UniversityHoustonUSA

Personalised recommendations