Myofiber Ellipticity as an Explanation for Transverse Asymmetry of Skeletal Muscle Diffusion MRI In Vivo Signal

  • Dimitrios C. Karampinos
  • Kevin F. King
  • Bradley P. Sutton
  • John G. Georgiadis
Article

Abstract

Due to its unique non-invasive microstructure probing capabilities, diffusion tensor imaging (DTI) constitutes a valuable tool in the study of fiber orientation in skeletal muscles. By implementing a DTI sequence with judiciously chosen directional encoding to quantify in vivo the microarchitectural properties in the calf muscles of three healthy volunteers at rest, we report that the secondary eigenvalue is significantly higher than the tertiary eigenvalue, a phenomenon corroborated by prior DTI findings. Toward a physics-based explanation of this phenomenon, we propose a composite medium model that accounts for water diffusion in the space within the muscle fiber and the extracellular space. The muscle fibers are abstracted as cylinders of infinite length with an elliptical cross section, the latter closely approximating microstructural features well documented in prior histological studies of excised muscle. The range of values of fiber ellipticity predicted by our model agrees with these studies, and the spatial orientation of the cross-sectional ellipses is consistent with local muscle strain fields and the putative direction of lateral transmission of stress between fibers in certain regions in three antigravity muscles (Tibialis Anterior, Soleus, and Gastrocnemius), as well as independent measurements of deformation in active calf muscles. As a metric, fiber cross-sectional ellipticity may be useful for quantifying morphological changes in skeletal muscle fibers with aging, hypertrophy, or sarcopenia.

Keywords

Skeletal muscle Myocytes Myofiber ellipticity Gastrocnemius Soleus Diffusion tensor imaging 

Notes

Acknowledgments

The present work was supported by the National Institutes of Health (grant R21HL090455), the Beckman Institute at the University of Illinois at Urbana-Champaign, IL, and the Applied Science Laboratory of GE Healthcare, Waukesha, WI, USA. DCK and JGG also thank Dr. Bruce Damon for a stimulating discussion regarding the possible role of the sarcoplasmic reticulum in diffusion, and Ms. Elise Corbin for her artwork.

References

  1. 1.
    Agur, A. M., V. Ng-Thow-Hing, K. A. Ball, E. Fiume, and N. H. McKee. Documentation and three-dimensional modelling of human soleus muscle architecture. Clin. Anat. 16:285–293, 2003.CrossRefPubMedGoogle Scholar
  2. 2.
    Andersen, J. L. Muscle fibre type adaptation in the elderly human muscle. Scand. J. Med. Sci. Sports 13:42–47, 2003.CrossRefGoogle Scholar
  3. 3.
    Anderson, A. W. Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn. Reson. Med. 46:1174–1188, 2001.CrossRefPubMedGoogle Scholar
  4. 4.
    Aquin, L., A. J. Lechner, A. H. Sillau, and N. Banchero. Analysis of shape changes of muscle fiber cross sections in guinea pigs raised at 22 °C and 5 °C. Pfuegers Arch. 385:223–228, 1980.CrossRefGoogle Scholar
  5. 5.
    Basser, P. J., J. Mattiello, and D. Le Bihan. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66:259–267, 1994.CrossRefPubMedGoogle Scholar
  6. 6.
    Behan, W. M., D. W. Cossar, H. A. Madden, and I. C. McKay. Validation of a simple, rapid, and economical technique for distinguishing type 1 and 2 fibres in fixed and frozen skeletal muscle. J. Clin. Pathol. 55:375–380, 2002.PubMedGoogle Scholar
  7. 7.
    Blemker, S. S., and S. L. Delp. Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. J. Biomech. 39:1383–1391, 2006.CrossRefPubMedGoogle Scholar
  8. 8.
    Blemker, S. S., P. M. Pinsky, and S. L. Delp. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38:657–665, 2005.CrossRefPubMedGoogle Scholar
  9. 9.
    Bojsen-Møller, J., H. P. Per Aagaard, U. Svantesson, M. Kjaer, and S. P. Magnusson. Differential displacement of the human soleus and medial gastrocnemius aponeuroses during isometric plantar flexor contractions in vivo. J. Appl. Physiol. 197:1908–1914, 2004.CrossRefGoogle Scholar
  10. 10.
    Campos, G. E., T. J. Luecke, H. K. Wendeln, K. Toma, F. C. Hagerman, T. F. Murray, K. E. Ragg, N. A. Ratamess, W. J. Kraemer, and R. S. Staron. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 85:50–60, 2002.CrossRefGoogle Scholar
  11. 11.
    Chin, C. L., F. W. Wehrli, C. N. Hwang, M. Takahashi, and D. B. Hackney. Biexponential diffusion attenuation in the rat spinal cord: computer simulations based on anatomic images of axonal architecture. Magn. Reson. Med. 47:455–460, 2002.CrossRefPubMedGoogle Scholar
  12. 12.
    Cleveland, G. G., D. C. Chang, C. F. Hazlewood, and H. E. Rorschach. Nuclear magnetic resonance measurement of skeletal muscle anisotropy of the diffusion coefficient of the intracellular water. Biophys. J. 16:1043–1053, 1976.CrossRefPubMedGoogle Scholar
  13. 13.
    Damon, B. M. Effects of image noise in muscle diffusion tensor (DT)-MRI assessed using numerical simulations. Magn. Reson. Med. 60:934–944, 2008.CrossRefPubMedGoogle Scholar
  14. 14.
    Damon, B. M., Z. Ding, A. W. Anderson, A. S. Freyer, and J. C. Gore. Validation of diffusion tensor MRI-based muscle fiber tracking. Magn. Reson. Med. 48:97–104, 2002.CrossRefPubMedGoogle Scholar
  15. 15.
    Delp, S. L., and J. P. Loan. A computational framework for simulating and analyzing human and animal movement. Comput. Sci. Eng. 2:46–55, 2000.CrossRefGoogle Scholar
  16. 16.
    Deux, J. F., P. Malzy, N. Paragios, G. Bassez, A. Luciani, P. Zerbib, F. Roudot-Thoraval, A. Vignaud, H. Kobeiter, and A. Rahnmouni. Assessment of calf muscle contraction by diffusion tensor imaging. Eur. Radiol. 18:2303–2310, 2008.CrossRefPubMedGoogle Scholar
  17. 17.
    Galban, C. J., S. Maderwald, K. Uffmann, A. de Greiff, and M. E. Ladd. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur. J. Appl. Physiol. 93:253–262, 2004.CrossRefPubMedGoogle Scholar
  18. 18.
    Galban, C. J., S. Maderwald, K. Uffmann, and M. E. Ladd. A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle. NMR Biomed. 18:489–498, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    Gerdes, A. M., S. E. Kellerman, K. B. Malec, and D. D. Schocken. Transverse shape characteristics of cardiac myocytes from rats and humans. Cardioscience 5:31–36, 1994.PubMedGoogle Scholar
  20. 20.
    Hatakenaka, M., Y. Matsuo, T. Setoguchi, H. Yabuuchi, T. Okafuji, T. Kamitani, K. Nishikawa, and H. Honda. Alteration of proton diffusivity associated with passive muscle extension and contraction. J. Magn. Reson. Imag. 27:932–937, 2008.CrossRefGoogle Scholar
  21. 21.
    Heemskerk, A. M., T. K. Sinha, K. J. Wilson, and B. M. Damon. Change in water diffusion properties with altered muscle architecture. In: Proceedings of the Int. Soc. Magn. Reson. Med., Toronto, Canada, 2008, p. 1787.Google Scholar
  22. 22.
    Heemskerk, A. M., G. J. Strijkers, M. R. Drost, G. S. van Bochove, and K. Nikolay. Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging. Radiology 243:414–421, 2007.CrossRefGoogle Scholar
  23. 23.
    Hodgson, J. A., T. Finni, A. M. Lai, V. R. Edgerton, and S. Sinha. Influence of structure on the tissue dynamics of the human soleus muscle observed in MRI studies during isometric contractions. J. Morphol. 267:584–601, 2006.CrossRefPubMedGoogle Scholar
  24. 24.
    Karampinos, D. C., K. F. King, B. P. Sutton, and J. G. Georgiadis. In vivo study of cross-sectional skeletal muscle fiber asymmetry with diffusion-weighted MRI. In: Proceedings of the IEEE-EMBS, Lyon, France, 2007, pp. 327–330.Google Scholar
  25. 25.
    Karampinos, D. C., K. F. King, B. P. Sutton, and J. G. Georgiadis. Mapping cross-sectional skeletal muscle asymmetry via high angular resolution diffusion imaging. In: Proceedings of the Int. Soc. Magn. Reson. Med., Hawaii, USA, 2009, p. 1928.Google Scholar
  26. 26.
    Kärger, J., H. Pfeifer, and W. Heink. Principles and applications of self diffusion measurements by nuclear magnetic resonance. Adv. Magn. Reson. 12:1–89, 1988.Google Scholar
  27. 27.
    Kjaer, M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 84:649–698, 2004.CrossRefPubMedGoogle Scholar
  28. 28.
    Landis, C. L., X. Li, F. W. Telang, P. Molina, I. Palyka, G. Vetek, and C. S. Spinger. Equilibrium transcytolemmal water-exchange kinetics in skeletal muscle in vivo. Magn. Reson. Med. 42:467–478, 1999.CrossRefPubMedGoogle Scholar
  29. 29.
    Lansdown, D. A., Z. Ding, M. Wadington, J. L. Hornberger, and B. M. Damon. Quantitative diffusion tensor MRI-based fiber tracking of human skeletal muscle. J. Appl. Physiol. 48:97–104, 2002.Google Scholar
  30. 30.
    LeGrice, I. J., Y. Takayama, and J. W. Covell. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ. Res. 77:182–193, 1995.PubMedGoogle Scholar
  31. 31.
    Merboldt, K. D., W. Hanicke, and J. Frahm. Self-diffusion NMR imaging using stimulated echoes. J. Magn. Reson. 64:479–486, 1995.Google Scholar
  32. 32.
    Nagarsekar, G., J. Hodgson, D. Shin, and S. Sinha. Development of a spin tag sequence with spiral acquisition for elucidating shear at the deep gastrocnemius aponeurosis and other dynamics of the musculoskeletal elements of the leg. In: Proceedings of the Int. Soc. Magn. Reson. Med., Hawaii, USA, 2009, p. 549.Google Scholar
  33. 33.
    Napadow, V. J., Q. Chen, V. Mai, P. T. C. So, and R. J. Gilbert. Quantitative analysis of three-dimensional-resolved fiber architecture in heterogeneous skeletal muscle tissue using NMR and optical imaging methods. Biophys. J. 80:2968–2975, 2001.CrossRefPubMedGoogle Scholar
  34. 34.
    Pappas, G. P., D. S. Asakawa, S. L. Delp, F. E. Zajac, and J. E. Drace. Nonuniform shortening in the biceps brachii during elbow flexion. J. Appl. Physiol. 92:2381–2389, 2002.PubMedGoogle Scholar
  35. 35.
    Passerieux, E., R. Rossignol, A. Chopard, A. Carnino, J. F. Marini, T. Letellier, and J. P. Delage. Structural organization of the perimysium in bovine skeletal muscle: junctional plates and associated intracellular subdomains. J. Struct. Biol. 154:206–216, 2006.CrossRefPubMedGoogle Scholar
  36. 36.
    Purslow, P. P. The structure and functional significance of variations in the connective tissue within muscle. Comp. Biochem. Physiol. A 133:947–966, 2002.CrossRefGoogle Scholar
  37. 37.
    Saab, G., T. R. Thompson, and G. D. Marsh. Multicomponent T2 relaxation of in vivo skeletal muscle. Magn. Reson. Med. 42:150–157, 1999.CrossRefPubMedGoogle Scholar
  38. 38.
    Saab, G., T. R. Thompson, G. D. Marsh, P. A. Picot, and G. R. Moran. Two-dimensional time correlation relaxometry of skeletal muscle in vivo at 3 Tesla. Magn. Reson. Med. 46:1093–1098, 2001.CrossRefPubMedGoogle Scholar
  39. 39.
    Saotome, T., M. Sekino, F. Eto, and S. Ueno. Evaluation of diffusional anisotropy and microscopic structure in skeletal muscles using magnetic resonance. Magn. Reson. Imag. 24:19–25, 2006.CrossRefGoogle Scholar
  40. 40.
    Sen, P. N., C. Scala, and M. H. Cohen. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46:781–795, 1981.CrossRefGoogle Scholar
  41. 41.
    Sinha, S., U. Sinha, and V. R. Edgerton. In vivo diffusion tensor imaging of the human calf muscle. J. Magn. Reson. Imag. 24:182–190, 2006.CrossRefGoogle Scholar
  42. 42.
    Sinha, U., and L. Yao. In vivo diffusion tensor imaging of human calf muscle. J. Magn. Reson. Imag. 15:87–95, 2002.CrossRefGoogle Scholar
  43. 43.
    Song, S. K., N. Shimada, and P. J. Anderson. Orthogonal diameters in the analysis of muscle fiber and form. Nature 200:1220–1221, 1963.CrossRefPubMedGoogle Scholar
  44. 44.
    Stanisz, G. J., A. Szafer, G. A. Wright, and R. M. Henkelman. An analytical model of restricted diffusion in bovine optic nerve. Magn. Reson. Med. 37:103–111, 1997.CrossRefPubMedGoogle Scholar
  45. 45.
    Staron, R. S., W. J. Kraemer, R. S. Hikida, A. C. Fry, J. D. Murray, and G. E. Campos. Fibre type composition of four hindlimb muscles of adult Fisher 344 rats. Histochem. Cell Biol. 111:117–123, 1999.CrossRefPubMedGoogle Scholar
  46. 46.
    Steidle, G., and F. Schick. Echoplanar diffusion tensor imaging of the lower leg musculature using eddy current nulled stimulated echo preparation. Magn. Reson. Med. 55:541–548, 2006.CrossRefPubMedGoogle Scholar
  47. 47.
    Trotter, J. A. Dynamic shape of tapered skeletal muscle fibers. J. Morphol. 207:221–223, 1991.CrossRefGoogle Scholar
  48. 48.
    Trotter, J. A., and P. P. Purslow. Functional morphology of the endomysium in series fibered muscles. J. Morphol. 212:109–122, 1992.CrossRefPubMedGoogle Scholar
  49. 49.
    Tseng, W. Y., V. J. Weeden, T. G. Reese, R. N. Smith, and E. F. Halpern. Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture. J. Magn. Reson. Imag. 17:31–42, 2003.CrossRefGoogle Scholar
  50. 50.
    van Donkelaar, C. C., P. J. B. Willems, A. M. M. Muijtjens, and M. R. Drost. Skeletal muscle transverse strain during isometric contraction at different lengths. J. Biomech. 32:755–762, 1999.CrossRefPubMedGoogle Scholar
  51. 51.
    Venema, H. M., and J. Overweg. Analysis of the size and shape of cross-sections of muscle fibers. Med. Biol. Eng. 12:681–692, 1974.CrossRefPubMedGoogle Scholar
  52. 52.
    Vincensini, D., V. Dedieu, J. P. Renou, P. Otal, and F. Joffre. Measurements of extracellular volume fraction and capillary permeability in tissues using dynamic spin–lattice relaxometry: studies in rabbit muscles. Magn. Reson. Imag. 21:85–93, 2003.CrossRefGoogle Scholar
  53. 53.
    Wedeen, V. J., T. G. Reese, V. J. Napadow, and R. J. Gilbert. Demonstration of primary and secondary muscle fiber architecture of the bovine tongue by diffusion tensor magnetic resonance imaging. Biophys. J. 80:1024–1028, 2001.CrossRefPubMedGoogle Scholar
  54. 54.
    Zimmerman, S. D., J. Criscione, and J. W. Covell. Remodeling in myocardium adjacent to an infarction in the pig left ventricle. Am. J. Physiol. Heart Circ. Physiol. 287:H2697–H2704, 2004.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Dimitrios C. Karampinos
    • 1
    • 3
  • Kevin F. King
    • 4
  • Bradley P. Sutton
    • 2
    • 3
  • John G. Georgiadis
    • 1
    • 3
    • 5
  1. 1.Department of Mechanical Science & EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Applied Science Laboratory, GE HealthcareWaukeshaUSA
  5. 5.2144 Mechanical Engineering LaboratoryUrbanaUSA

Personalised recommendations