Annals of Biomedical Engineering

, Volume 37, Issue 11, pp 2360–2372 | Cite as

The Combined Effect of Frontal Plane Tibiofemoral Knee Angle and Meniscectomy on the Cartilage Contact Stresses and Strains

  • Nicholas Yang
  • Hamid Nayeb-HashemiEmail author
  • Paul K. Canavan


Abnormal tibiofemoral alignment can create loading conditions at the knee that may lead to the initiation and progression of knee osteoarthritis (OA). The degenerative changes of the articular cartilage may occur earlier and with greater severity in individuals with abnormal frontal plane tibiofemoral alignment who undergo a partial or total meniscectomy. In this investigation, subject specific 3D finite element knee models were created from magnetic resonance images of two female subjects to study the combined effect of frontal plane tibiofemoral alignment and total and partial meniscectomy on the stress and strain at the knee cartilage. Different amounts of medial and lateral meniscectomies were modeled and subject specific loading conditions were determined from motion analysis and force platform data during single-leg support. The results showed that the maximum stresses and strains occurred on the medial tibial cartilage after medial meniscectomy but a greater percentage change in the contact stresses and strains occurred in the lateral cartilage after lateral meniscectomy for both subjects due to the resultant greater load bearing role of the lateral meniscus. The results indicate that individual’s frontal plane knee alignment and their unique local force distribution between the cartilage and meniscus play an important role in the biomechanical effects of total and partial meniscectomy.


Finite element analysis Varus Valgus Meniscectomy Knee 


  1. 1.
    Akizuki, S., V. C. Mow, F. Müller, J. C. Pita, D. S. Howell, and D. H. Manicourt. Tensile properties of human knee cartilage. I. Influence of ionic conditions, weight bearing and fibrillation on the tensile modulus. J. Orthop. Res. 4:379–392, 1986.PubMedCrossRefGoogle Scholar
  2. 2.
    Allen, P. R., R. A. Denham, and A. V. Swan. Late degenerative changes after meniscectomy. J. Bone Joint Surg. 66-B:667–671, 1984.Google Scholar
  3. 3.
    Andriacchi, T. P. Dynamics of knee malalignment. Orthop. Clin. North Am. 25:395–403, 1994.PubMedGoogle Scholar
  4. 4.
    Andriacchi, T. P., P. L. Briant, S. L. Bevill, and S. Koo. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin. Orthop. Relat. Res. 442:39–44, 2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Andriacchi, T. P., A. Mündermann, R. L. Smith, E. J. Alexander, C. O. Dyrby, and S. Koo. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32:447–457, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Armstrong, C. G., W. M. Lai, and V. C. Mow. An analysis of the unconfined compression of articular cartilage. J. Biomed. Eng. 106:165–173, 1984.Google Scholar
  7. 7.
    Arokoski, J. P. A., J. S. Jurvelin, U. Vaatainen, and H. J. Helminen. Normal and pathological adaptations of articular cartilage to joint loading. Scand. J. Med. Sci. Sports 10:186–198, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    AufderHeide, A. C., and K. A. Athanasiou. Mechanical stimulation toward tissue engineering on the knee meniscus. Ann. Biomed. Eng. 32:1161–1174, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Bai, B., F. J. Kummer, D. A. Sala, K. J. Koval, and P. R. Wolinsky. Effect of articular step-off and meniscectomy on joint alignment and contact pressures for fractures of the lateral tibial plateau. J. Orthop. Trauma 15:101–106, 2001.PubMedCrossRefGoogle Scholar
  10. 10.
    Blankevoort, L., J. H. Kuiper, R. Huiskes, and H. J. Grootenboer. Articular contact in a three-dimensional model of the knee. J. Biomech. 24:1019–1031, 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Burks, R. T., M. H. Metcalf, and R. W. Metcalf. Fifteen-year follow-up of arthroscopic partial meniscectomy. Arthroscopy: J. Arthrosc. Relat. Surg. 13:673–679, 1997.CrossRefGoogle Scholar
  12. 12.
    Canavan, P., N. H. Yang, and H. Nayeb-Hashemi. Method to determine the effect of the frontal plane tibiofemoral angle on the varus-valgus moment at the knee during stance and gait. In: Proceedings of ASME Summer Bioengineering Conference, Marco Island, Florida, USA, June 25–29, 2008.Google Scholar
  13. 13.
    Cerejo, R., D. D. Dunlop, S. Cahue, D. Channin, J. Song, and L. Sharma. The influence of alignment on risk of knee osteoarthritis progression according to baseline stage of disease. Arthritis Rheum. 46:2632–2636, 2002.PubMedCrossRefGoogle Scholar
  14. 14.
    Chao, E. Y. S., E. V. D. Neluheni, R. W. W. Hsu, and D. Paley. Biomechanics of malalignment. Orthop. Clin. North Am. 25:379–386, 1994.PubMedGoogle Scholar
  15. 15.
    Charnley, J. The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Ann. Rheum. Dis. 19:10–19, 1960.PubMedCrossRefGoogle Scholar
  16. 16.
    Christoforakis, J., R. Pradhan, J. Sanchez-Ballester, N. Hunt, and R. K. Strachan. Is there an association between articular cartilage changes and degenerative meniscus tears? Arthroscopy: J. Arthrosc. Relat. Surg. 21:1366–1369, 2005.CrossRefGoogle Scholar
  17. 17.
    Cooper, C., S. Snow, T. E. McAlindon, S. Kellingray, B. Stuart, D. Coggon, and P. A. Dieppe. Risk factors of the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum. 43:995–1000, 2000.PubMedCrossRefGoogle Scholar
  18. 18.
    Cottrell, J. M., P. Scholten, T. Wanich, R. F. Warren, T. M. Wright, and S. A. Maher. A new technique to measure the dynamic contact pressures on the tibial plateau. J. Biomech. 41:2324–2329, 2008.PubMedCrossRefGoogle Scholar
  19. 19.
    De Smet, A. A., and B. K. Graf. Meniscal tears missed on MR imaging: relationship to meniscal and anterior cruciate ligament tears. Am. J. Roentgenol. 162:905–911, 1994.Google Scholar
  20. 20.
    Eberhardt, A. W., L. M. Keer, J. L. Lewis, and V. Vithoontien. An analytical model of joint contact. J. Biomech. Eng. 112:407–413, 1990.PubMedCrossRefGoogle Scholar
  21. 21.
    Englund, M., and L. S. Lohmander. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 50:2811–2819, 2004.PubMedCrossRefGoogle Scholar
  22. 22.
    Englund, M., E. M. Roos, and L. S. Lohmander. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis. Arthritis Rheum. 48:2178–2187, 2003.PubMedCrossRefGoogle Scholar
  23. 23.
    Englund, M., E. M. Roos, H. P. Roos, and L. S. Lohmander. Patient-relevant outcomes fourteen years after meniscectomy: influence of type of meniscal tear and size of resection. Rheumatology 40:631–639, 2001.PubMedCrossRefGoogle Scholar
  24. 24.
    Englund, M. D., A. Guermazi, D. Gale, D. J. Hunter, P. Aliabadi, M. Clancy, and D. T. Felson. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N. Engl. J. Med. 359:1108–1115, 2008.PubMedCrossRefGoogle Scholar
  25. 25.
    Fairbank, T. J. Knee joint changes after meniscectomy. J. Bone Joint Surg. 30B:664–670, 1948.PubMedGoogle Scholar
  26. 26.
    Felson, D. T., R. C. Lawrence, P. A. Dieppe, R. Hirsch, C. G. Helmick, J. M. Jordan, R. S. Kington, N. E. Lane, M. C. Nevitt, Y. Zhang, M. Sowers, T. McAlindon, T. D. Spector, A. R. Poole, S. Z. Yanovski, G. Ateshian, L. Sharma, J. A. Buckwalter, K. D. Brandt, and J. F. Fries. Osteoarthritis: new insights. Part 1. The disease and its risk factors. Ann. Intern. Med. 133:635–646, 2000.Google Scholar
  27. 27.
    Fithian, D. C., M. A. Kelly, and V. C. Mow. Material properties and structure–function relationship in the menisci. Clin. Orthop. Relat. Res. 252:19–31, 1990.PubMedGoogle Scholar
  28. 28.
    Ford, K. R., G. D. Myer, and T. E. Hewett. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 35:1745–1750, 2003.PubMedCrossRefGoogle Scholar
  29. 29.
    Haut Donahue, T. L., M. L. Hull, M. M. Rashid, and C. R. Jacobs. A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124:273–280, 2002.CrossRefGoogle Scholar
  30. 30.
    Hsu, R. W., S. Himeno, M. B. Coventry, and E. Y. S. Chao. Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin. Orthop. Relat. Res. 255:215–227, 1988.Google Scholar
  31. 31.
    Jackson, J. P. Degenerative changes in the knee after meniscectomy. Br. Med. J. 2:525–527, 1968.PubMedCrossRefGoogle Scholar
  32. 32.
    Johnson, F., S. Leitl, and W. Waugh. The distribution of load across the knee. J. Bone Joint Surg. 67-B:346–349, 1980.Google Scholar
  33. 33.
    Johnson, R. J., D. B. Kettelkamp, W. Clark, and P. Leaverton. Factors affecting late results after meniscectomy. J. Bone Joint Surg. 56:719–729, 1974.PubMedGoogle Scholar
  34. 34.
    Jørgensen, U., S. Sonne-Holm, F. Lauridsen, and A. Rosenklint. Long-term follow-up of meniscectomy in athletes. J. Bone Joint Surg. 69-B:80–83, 1987.Google Scholar
  35. 35.
    Karachalios, T., P. P. Sarangi, and J. H. Newman. Severe varus and valgus deformities treated by total knee arthroplasty. J. Bone Joint Surg. 76:938–942, 1994.Google Scholar
  36. 36.
    Kellis, E., and V. Baltzopoulos. In vivo determination of the patella tendon and hamstrings moment arms in adult males using videofluoroscopy during submaximal knee extension and flexion. Clin. Biomech. 14:118–124, 1999.CrossRefGoogle Scholar
  37. 37.
    Kerin, A. J., M. R. Wisnom, and M. A. Adams. The compressive strength of articular cartilage. Proc. Inst. Mech. Eng. H 212:273–280, 1998.PubMedCrossRefGoogle Scholar
  38. 38.
    Krause, W. R., M. H. Pope, R. J. Johnson, and D. G. Wilder. Mechanical changes in the knee after meniscectomy. J. Bone Joint Surg. 58:599–604, 1976.PubMedGoogle Scholar
  39. 39.
    Kurzweil, P. R., and M. J. Friedman. Meniscus: resection, repair and replacement. Arthroscopy: J. Arthrosc. Relat. Surg. 18:33–39, 2002.CrossRefGoogle Scholar
  40. 40.
    Levy, I. M., P. A. Torzilli, and R. F. Warren. The effect of medial meniscectomy on anterior-posterior motion of the knee. J. Bone Joint Surg. 64:883–888, 1982.PubMedGoogle Scholar
  41. 41.
    Levy, I. M., P. A. Torzilli, and R. F. Warren. The effect of lateral meniscectomy on motion of the knee. J. Bone Joint Surg. 71:401–406, 1989.PubMedGoogle Scholar
  42. 42.
    Li, G., L. E. DeFrate, S. E. Park, and T. J. Gill. In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models. Am. J. Sports Med. 33:102–107, 2005.PubMedCrossRefGoogle Scholar
  43. 43.
    Li, G., J. Gil, A. Kanamori, and S. L.-Y. Woo. A validated three-dimensional model of a human knee joint. J. Biomech. Eng. 121:657–662, 1999.PubMedCrossRefGoogle Scholar
  44. 44.
    Li, G., O. Lopez, and H. Rubash. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J. Biomed. Eng. 123:341–346, 2001.Google Scholar
  45. 45.
    Li, G., J. Suggs, and T. Gill. The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation. Ann. Biomed. Eng. 30:713–720, 2002.PubMedCrossRefGoogle Scholar
  46. 46.
    McGinity, J. B., L. F. Geuss, and R. A. Marvin. Partial or total meniscectomy: a comparative analysis. J. Bone Joint Surg. 59:763–766, 1977.PubMedGoogle Scholar
  47. 47.
    Messner, K., and J. Gao. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J. Anat. 193:161–178, 1998.PubMedCrossRefGoogle Scholar
  48. 48.
    Morrison, J. B. The mechanics of the knee joint in relation to normal walking. J. Biomech. 3:51–61, 1970.PubMedCrossRefGoogle Scholar
  49. 49.
    Peña, E., B. Calvo, M. A. Martínez, and M. Doblaré. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39:1686–1701, 2006.PubMedCrossRefGoogle Scholar
  50. 50.
    Peña, E., B. Calvo, M. A. Martínez, and M. Doblaré. Computer simulation of damage on distal femoral articular cartilage after meniscectomies. Comput. Biol. Med. 38:69–81, 2008.PubMedCrossRefGoogle Scholar
  51. 51.
    Peña, E., B. Calvo, M. A. Martínez, D. Palanca, and M. Doblaré. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin. Biomech. 20:498–507, 2005.CrossRefGoogle Scholar
  52. 52.
    Peña, E., B. Calvo, M. A. Martínez, D. Palanca, and M. Doblaré. Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study. J. Orthop. Res. 24:1001–1010, 2006.PubMedCrossRefGoogle Scholar
  53. 53.
    Quinn, T. M., R. G. Allen, B. J. Schalet, P. Perumbuli, and E. B. Huniker. Matrix and cell injury due to sub-impact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress. J. Orthop. Res. 19:242–249, 2001.PubMedCrossRefGoogle Scholar
  54. 54.
    Rangger, C., T. Klestil, W. Gloetzer, G. Kemmler, and K. P. Benedetto. Osteoarthritis after arthroscopic partial meniscectomy. Am. J. Sports Med. 23:240–244, 1995.PubMedCrossRefGoogle Scholar
  55. 55.
    Repo, R. U., and J. B. Finaly. Survival of articular cartilage after controlled impact. J. Bone Joint Surg. 59:1068–1076, 1977.PubMedGoogle Scholar
  56. 56.
    Roos, H., M. Laurén, T. Adalberth, E. M. Roos, K. Jonsson, and L. S. Lohmander. Knee osteoarthritis after meniscectomy. Arthritis Rheum. 41:687–693, 1998.PubMedCrossRefGoogle Scholar
  57. 57.
    Schipplein, O. D., and T. P. Andriacchi. Interaction between active and passive knee stabilizers during level walking. J. Orthop. Res. 9:113–119, 1991.PubMedCrossRefGoogle Scholar
  58. 58.
    Sell, T. C., C. M. Ferris, J. P. Abt, Y.-S. Tsai, J. B. Myers, F. H. Fu, and S. M. Lephart. The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism. Am. J. Sports Med. 34:43–54, 2006.PubMedCrossRefGoogle Scholar
  59. 59.
    Sharma, L., J. Song, D. T. Felson, S. Cahue, E. Shamiyeh, and D. D. Dunlop. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195, 2001.PubMedCrossRefGoogle Scholar
  60. 60.
    Sowers, M. Epidemiology of risk factors for osteoarthritis: systemic factors. Curr. Opin. Rheumatol. 13:447–451, 2001.PubMedCrossRefGoogle Scholar
  61. 61.
    Vadher, S. P., H. Nayeb-Hashemi, P. K. Canavan, and G. M. Warner. Finite element modeling following partial meniscectomy: effect of various size of resection. In: Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, New York, USA, Aug 30–Sept 3, 2006.Google Scholar
  62. 62.
    Vaziri, A., H. Nayeb-Hashemi, A. Singh, and B. A. Taft. Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint. Ann. Biomed. Eng. 36:1335–1344, 2008.PubMedCrossRefGoogle Scholar
  63. 63.
    Walker, P. S., and M. J. Erkman. The role of the menisci in force transmission across the knee. Clin. Orthop. Relat. Res. 109:184–192, 1975.PubMedCrossRefGoogle Scholar
  64. 64.
    Wilson, W., B. van Rietbergen, C. C. van Donkelaar, and R. Huiskes. Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy. J. Biomech. 36:845–851, 2003.PubMedCrossRefGoogle Scholar
  65. 65.
    Winter, D. A. Biomechanics and Motor control of Human Movement (3rd ed.). John Wiley and Sons, Inc., 2005.Google Scholar
  66. 66.
    Yang, N. H., H. Nayeb-Hashemi, and P. Canavan. Finite element analysis of the knee: the effect of tibiofemoral alignment and weight on the stresses in the knee. In: Proceedings of ASME Summer Bioengineering Conference, Marco Island, Florida, USA, June 25–29, 2008.Google Scholar
  67. 67.
    Yao, J., J. Snibbe, M. Maloney, and A. L. Lerner. Stresses and strains in the medial meniscus of an acl deficient knee under anterior loading: a finite element analysis with image-based experimental validation. J. Biomech. Eng. 128:135–141, 2006.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhao, D., S. A. Banks, K. H. Mitchell, D. D. D’Lima, C. W. Colwell, Jr., and B. J. Fregly. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J. Orthop. Res. 25:789–797, 2007.PubMedCrossRefGoogle Scholar
  69. 69.
    Zielinska, B., and T. L. Hart Donahue. 3D finite element model of meniscectomy: changes in joint contact behavior. J. Biomech. Eng. 128:115–123, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Nicholas Yang
    • 1
  • Hamid Nayeb-Hashemi
    • 1
    Email author
  • Paul K. Canavan
    • 2
  1. 1.Mechanical and Industrial Engineering Department, 334 Snell Engineering CenterNortheastern UniversityBostonUSA
  2. 2.Physical Therapy DepartmentNortheastern UniversityBostonUSA

Personalised recommendations