Annals of Biomedical Engineering

, Volume 37, Issue 11, pp 2390–2401 | Cite as

In Vivo Demonstration of a Self-Sustaining, Implantable, Stimulated-Muscle-Powered Piezoelectric Generator Prototype

  • B. E. Lewandowski
  • K. L. Kilgore
  • K. J. Gustafson
Article

Abstract

An implantable, stimulated-muscle-powered piezoelectric active energy harvesting generator was previously designed to exploit the fact that the mechanical output power of muscle is substantially greater than the electrical power necessary to stimulate the muscle’s motor nerve. We reduced to practice the concept by building a prototype generator and stimulator. We demonstrated its feasibility in vivo, using rabbit quadriceps to drive the generator. The generated power was sufficient for self-sustaining operation of the stimulator and additional harnessed power was dissipated through a load resistor. The prototype generator was developed and the power generating capabilities were tested with a mechanical muscle analog. In vivo generated power matched the mechanical muscle analog, verifying its usefulness as a test-bed for generator development. Generator output power was dependent on the muscle stimulation parameters. Simulations and in vivo testing demonstrated that for a fixed number of stimuli/minute, two stimuli applied at a high frequency generated greater power than single stimuli or tetanic contractions. Larger muscles and circuitry improvements are expected to increase available power. An implanted, self-replenishing power source has the potential to augment implanted battery or transcutaneously powered electronic medical devices.

Keywords

Piezoelectric energy conversion Mechanical muscle power Electrical stimulation Rabbit 

References

  1. 1.
    Araki, K., T. Nakatani, K. Toda, Y. Taenaka, E. Tatsumi, T. Masuzawa, Y. Baba, A. Yagura, Y. Wakisaka, K. Eya, et al. Power of the fatigue resistant in situ latissimus dorsi muscle. ASAIO J. 41:M768–M771, 1995.PubMedCrossRefGoogle Scholar
  2. 2.
    Bhadra, N., K. L. Kilgore, and P. H. Peckham. Implanted stimulators for restoration of function in spinal cord injury. Med. Eng. Phys. 23:19–28, 2001.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhadra, N., and P. H. Peckham. Peripheral nerve stimulation for restoration of motor function. J. Clin. Neurophysiol. 14:378–393, 1997.PubMedCrossRefGoogle Scholar
  4. 4.
    Burton, H. W., T. R. Stevenson, T. P. White, J. Hartman, and J. A. Faulkner. Force deficit of vascularized skeletal muscle grafts in rabbits. J. Appl. Physiol. 66:675–679, 1989.PubMedGoogle Scholar
  5. 5.
    Creasey, G. H. Electrical stimulation of sacral roots for micturition after spinal cord injury. Urol. Clin. North Am. 20:505–515, 1993.PubMedGoogle Scholar
  6. 6.
    Deharo, J. C., and P. Djiane. Pacemaker longevity. Replacement of the device. Ann. Cardiol. Angeiol. (Paris) 54:26–31, 2005.CrossRefGoogle Scholar
  7. 7.
    Ding, J., L. W. Chou, T. M. Kesar, S. C. Lee, T. E. Johnston, A. S. Wexler, and S. A. Binder-Macleod. Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injuries. Muscle Nerve 36:214–222, 2007.PubMedCrossRefGoogle Scholar
  8. 8.
    Ding, J., S. C. Lee, T. E. Johnston, A. S. Wexler, W. B. Scott, and S. A. Binder-Macleod. Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries. Muscle Nerve 31:702–712, 2005.PubMedCrossRefGoogle Scholar
  9. 9.
    Ding, J., A. S. Wexler, and S. A. Binder-Macleod. A predictive model of fatigue in human skeletal muscles. J. Appl. Physiol. 89:1322–1332, 2000.PubMedGoogle Scholar
  10. 10.
    Donelan, J. M., Q. Li, V. Naing, J. A. Hoffer, D. J. Weber, and A. D. Kuo. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 319:807–810, 2008.PubMedCrossRefGoogle Scholar
  11. 11.
    Elvin, N., A. A. Elvin, and M. Spector. A self-powered mechancial strain energy sensor. Smart Mater. Struct. 10:293–299, 2001.CrossRefGoogle Scholar
  12. 12.
    Feenstra, J., J. Granstrom, and H. Sodano. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mech. Syst. Signal Process. 22:721–734, 2008.CrossRefGoogle Scholar
  13. 13.
    Fukunaga, T., R. R. Roy, F. G. Shellock, J. A. Hodgson, M. K. Day, P. L. Lee, H. Kwong-Fu, and V. R. Edgerton. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J. Orthop. Res. 10:928–934, 1992.PubMedCrossRefGoogle Scholar
  14. 14.
    Glenn, W. W., M. L. Phelps, J. A. Elefteriades, B. Dentz, and J. F. Hogan. Twenty years of experience in phrenic nerve stimulation to pace the diaphragm. Pacing Clin. Electrophysiol. 9:780–784, 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Goto, H., T. Sugiura, Y. Harada, and T. Kazui. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med. Biol. Eng. Comput. 37:377–380, 1999.PubMedCrossRefGoogle Scholar
  16. 16.
    Granata, K. P., and W. S. Marras. An EMG-assisted model of trunk loading during free-dynamic lifting. J. Biomech. 28:1309–1317, 1995.PubMedCrossRefGoogle Scholar
  17. 17.
    Griffin, L., S. Godfrey, and C. K. Thomas. Stimulation pattern that maximizes force in paralyzed and control whole thenar muscles. J. Neurophysiol. 87:2271–2278, 2002.PubMedGoogle Scholar
  18. 18.
    Gustafson, K. J., S. M. Marinache, G. D. Egrie, and S. H. Reichenbach. Models of metabolic utilization predict limiting conditions for sustained power from conditioned skeletal muscle. Ann. Biomed. Eng. 34:790–798, 2006.PubMedCrossRefGoogle Scholar
  19. 19.
    Hausler, E. and L. Stein. Implantable physiological power supply with PVDF film. In: Medical Applications of Piezoelectric Polymers, edited by P. M. Galletti, D. E. De Rossi, and A. S. De Reggi. New York, NY: Gordon and Breach Science Publishers, 1988, pp. 259–264.Google Scholar
  20. 20.
    Jarvis, J. C. Power production and working capacity of rabbit tibialis anterior muscles after chronic electrical stimulation at 10 Hz. J. Physiol. 470:157–169, 1993.PubMedGoogle Scholar
  21. 21.
    Kaab, M. J., K. Ito, J. M. Clark, and H. P. Notzli. Deformation of articular cartilage collagen structure under static and cyclic loading. J. Orthop. Res. 16:743–751, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaab, M. J., K. Ito, B. Rahn, J. M. Clark, and H. P. Notzli. Effect of mechanical load on articular cartilage collagen structure: a scanning electron-microscopic study. Cells Tissues Organs 167:106–120, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    Karu, Z. Z., W. K. Durfee, and A. M. Barzilai. Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains. IEEE Trans. Biomed. Eng. 42:809–817, 1995.PubMedCrossRefGoogle Scholar
  24. 24.
    Keith, M. W., P. H. Peckham, G. B. Thrope, K. C. Stroh, B. Smith, J. R. Buckett, K. L. Kilgore, and J. W. Jatich. Implantable functional neuromuscular stimulation in the tetraplegic hand. J. Hand. Surg. [Am.] 14:524–530, 1989.CrossRefGoogle Scholar
  25. 25.
    Kilgore, K. L. Personal Communication: Power consumption of a hand grasp neuroprosthesis, 2003.Google Scholar
  26. 26.
    Kim, H., S. Priya, H. Stephanou, and K. Uchino. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting. IIEEE Trans. Ultrason. Ferroelectr. Freq. Control 54:1851–1859, 2007.PubMedCrossRefGoogle Scholar
  27. 27.
    Kindermann, M., B. Schwaab, M. Berg, and G. Frohlig. Longevity of dual chamber pacemakers: device and patient related determinants. Pacing Clin. Electrophysiol. 24:810–815, 2001.PubMedCrossRefGoogle Scholar
  28. 28.
    Ko, W. H. Piezoelectric energy converter for electronic implants. In: 19th Annual Conference of the Society for Engineering in Medicine and Biology, 1966, p. 67.Google Scholar
  29. 29.
    Ko, W. H. Power sources for implant telemetry and stimulation systems. In: A Handbook on Biotelemetry and Radio Tracking, edited by C. J. Amlaner, and D. MacDonald. Elmsford, NY: Pergamon Press, Inc., 1980, pp. 225–245.Google Scholar
  30. 30.
    Krikke, J. Sunrise for energy harvesting products. IEEE Pervasive Comput. 4:4–8, 2005.Google Scholar
  31. 31.
    Lewandowski, B. E., K. L. Kilgore, and K. J. Gustafson. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power. Ann. Biomed. Eng. 35:631–641, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Lewandowski, B. E., K. L. Kilgore, and K. J. Gustafson. Feasibility of an implantable, stimulated muscle-powered piezoelectric generator as a power source for implanted medical devices. In: Energy Harvesting Technologies, edited by S. Priya, and D. J. Inman. New York, NY: Springer Science + Business Media, LLC, 2009, pp. 389–404.CrossRefGoogle Scholar
  33. 33.
    Lin, Y., D. Sylvester, and D. Blaauw. A sub-pW timer using gate leakage for ultra low-power sub-Hz monitoring systems. In: IEEE Custom Integrated Circuits Conference, San Jose, CA, 2007.Google Scholar
  34. 34.
    MacDonald, S. G. Biothermal power source for implantable devices. US Patent 6,640,137, 10-28-2003.Google Scholar
  35. 35.
    Marras, W. S., M. J. Jorgensen, K. P. Granata, and B. Wiand. Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI. Clin. Biomech. (Bristol, Avon) 16:38–46, 2001.CrossRefGoogle Scholar
  36. 36.
    Maurel, W. 3D Modeling of the Human Upper Limb Including the Biomechancis of Joints, Muscles and Soft Tissues. Dissertation, Ecole Polytechnique Federale de Lausanne, 1998.Google Scholar
  37. 37.
    Notzli, H., and J. Clark. Deformation of loaded articular cartilage prepared for scanning electron microscopy with rapid freezing and freeze-substitution fixation. J. Orthop. Res. 15:76–86, 1997.PubMedCrossRefGoogle Scholar
  38. 38.
    Ottman, G. K., H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 17:669–676, 2002.CrossRefGoogle Scholar
  39. 39.
    Ozeki, T., T. Chinzei, Y. Abe, I. Saito, T. Isoyama, S. Mochizuki, M. Ishimaru, K. Takiura, A. Baba, T. Toyama, and K. Imachi. Functions for detecting malposition of transcutaneous energy transmission coils. ASAIO J. 49:469–474, 2003.PubMedGoogle Scholar
  40. 40.
    Parmiggiani, F., and R. B. Stein. Nonlinear summation of contractions in cat muscles. II. Later facilitation and stiffness changes. J. Gen. Physiol. 78:295–311, 1981.PubMedCrossRefGoogle Scholar
  41. 41.
    Pierrynowski, M. R. Analytic representation of muscle line of action and geometry. In: Three-Dimensional Analysis of Human Movement, edited by P. Allard, I. A. F. Stokes, and J. P. Blanchi. Champaign, IL: Human Kinetics, 1995, pp. 215–256.Google Scholar
  42. 42.
    Platt, S. R., S. Farritor, and H. Haider. On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans. Mechatronics 10:240–252, 2005.CrossRefGoogle Scholar
  43. 43.
    Puers, R., and G. Vandevoorde. Recent progress on transcutaneous energy transfer for total artificial heart systems. Artif. Organs 25:400–405, 2001.PubMedCrossRefGoogle Scholar
  44. 44.
    Rome, L. C., L. Flynn, E. M. Goldman, and T. D. Yoo. Generating electricity while walking with loads. Science 309:1725–1728, 2005.PubMedCrossRefGoogle Scholar
  45. 45.
    Salmons, S., and G. Vrbova. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J. Physiol. 201:535–549, 1969.PubMedGoogle Scholar
  46. 46.
    Seiko Watch Company. Seiko World’s First. http://www.seikowatches.com/heritage/worlds_first.html [Online], 2009.
  47. 47.
    Shenck, N. S., and J. A. Paradiso. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21:30–42, 2001.CrossRefGoogle Scholar
  48. 48.
    Tan, Y. K., K. Y. Hoe, and S. K. Panda. Energy harvesting using piezoelectric igniter for self-powered radio frequency (RF) wireless sensors. IEEE International Conference on Industrial Technology, Mumbai, India, 2006.Google Scholar
  49. 49.
    Trumble, D. R. Personal Communication: Power requirements of VAD, 2009.Google Scholar
  50. 50.
    Trumble, D. R., W. A. LaFramboise, C. Duan, and J. A. Magovern. Functional properties of conditioned skeletal muscle: implications for muscle-powered cardiac assist. Am. J. Physiol. 273:C588–C597, 1997.PubMedGoogle Scholar
  51. 51.
    Trumble, D. R., D. B. Melvin, D. A. Dean, and J. A. Magovern. In vivo performance of a muscle-powered drive system for implantable blood pumps. ASAIO J. 54:227–232, 2008.PubMedCrossRefGoogle Scholar
  52. 52.
    Trumble, D. R., D. B. Melvin, and J. A. Magovern. Method for anchoring biomechanical implants to muscle tendon and chest wall. ASAIO J. 48:62–70, 2002.PubMedCrossRefGoogle Scholar
  53. 53.
    Vorperian, V. R., S. Lawrence, and K. Chlebowski. Replacing abdominally implanted defibrillators: effect of procedure setting on cost. Pacing Clin. Electrophysiol. 22:698–705, 1999.PubMedCrossRefGoogle Scholar
  54. 54.
    Wenzel, B. Closed-loop Electrical Control of Urinary Continence. Dissertation, Case Western Reserve University, 2005.Google Scholar
  55. 55.
    Wexler, A. S., J. Ding, and S. A. Binder-Macleod. A mathematical model that predicts skeletal muscle force. IEEE Trans. Biomed. Eng. 44:337–348, 1997.PubMedCrossRefGoogle Scholar
  56. 56.
    Wong, L. S. Y., S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas. A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid-State Circuit 39:2446–2456, 2004.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • B. E. Lewandowski
    • 1
    • 2
  • K. L. Kilgore
    • 2
    • 3
    • 4
  • K. J. Gustafson
    • 2
    • 4
  1. 1.Bioscience and Technology BranchNASA Glenn Research CenterClevelandUSA
  2. 2.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  3. 3.Metro Health Medical CenterClevelandUSA
  4. 4.Louis Stokes Cleveland Department of Veterans Affairs Medical CenterClevelandUSA

Personalised recommendations