Annals of Biomedical Engineering

, Volume 37, Issue 11, pp 2218–2221 | Cite as

The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms

  • Jose F. Rodríguez
  • Giampalo Martufi
  • Manuel Doblaré
  • Ender A. Finol


A reliable estimation of wall stress in Abdominal Aortic Aneurysms (AAAs), requires performing an accurate three-dimensional reconstruction of the medical image-based native geometry and modeling an appropriate constitutive law for the aneurysmal tissue material characterization. A recent study on the biaxial mechanical behavior of human AAA tissue specimens demonstrates that aneurysmal tissue behaves mechanically anisotropic. Results shown in this communication show that the peak wall stress is highly sensitive to the anisotropic model used for the stress analysis. In addition, the present investigation indicates that structural parameters (e.g., collagen fiber orientation) should be determined independently and not by means of non-linear fitting to stress–strain test data. Fiber orientation identified in this manner could lead to overestimated peak wall stresses.


Aneurysm Wall stress Anisotropy Soft tissue mechanics Computational modeling Rupture Biomechanics Thrombus 



This work is supported in part by the Pennsylvania Infrastructure Technology Alliance (a partnership of Carnegie Mellon University, Lehigh University and the Commonwealth of Pennsylvania Department of Community and Economic Development), the Spanish Ministry of Science and Technology through research grant DPI2004-07410-C03-01, the University of Zaragoza, an allocation of advanced computing resources granted by the National Science Foundation through the TeraGrid project at the Pittsburgh Supercomputing Center, and NIH grants R21EB007651, from the National Institute of Biomedical Imaging and Bioengineering, and R15HL087268, from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    Di Martino, E. S., and D. A. Vorp. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31:804–809, 2003. doi: 10.1114/1.1581880.PubMedCrossRefGoogle Scholar
  2. 2.
    Drangova, M., D. W. Holdsworth, C. J. Boyd, P. J. Dunmore, M. R. Roach, and A. Fenster. Elasticity and geometry measurements of vascular specimens using a high-resolution laboratory CT scanner. Physiol. Meas. 14:277–290, 1993. doi: 10.1088/0967-3334/14/3/006.PubMedCrossRefGoogle Scholar
  3. 3.
    Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37:724–732, 2003. doi: 10.1067/mva.2003.213.PubMedCrossRefGoogle Scholar
  4. 4.
    Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modeling of arterial layers with distributed collagen fiber orientations. J. R. Soc. Interface 3(6):15–35, 2006. doi: 10.1098/rsif.2005.0073.PubMedCrossRefGoogle Scholar
  5. 5.
    Holzapfel, G. A. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: Wiley, 2000.Google Scholar
  6. 6.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000. doi: 10.1023/A:1010835316564.CrossRefGoogle Scholar
  7. 7.
    Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer-Verlag, 2002.Google Scholar
  8. 8.
    Klinkel, S., and S. Govindjee. Using finite strain 3D-material models in beam and shell elements. Eng. Comput. 19(8):902–921, 2002. doi: 10.1108/02644400210450341.CrossRefGoogle Scholar
  9. 9.
    Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution, J. Biomech. Eng. 131(6):061015, 2009. doi: 10.1115/1.3127256.Google Scholar
  10. 10.
    Martufi, G., J. F. Rodriguez, G. J. Parisi, M. Doblare, S. C. Muluk, and E. A. Finol. Nonlinear anisotropic stress analysis of anatomically realistic abdominal aortic aneurysms. J. Biomech. (submitted).Google Scholar
  11. 11.
    Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000. doi: 10.1016/S0021-9290(99)00201-8.PubMedCrossRefGoogle Scholar
  12. 12.
    Raghavan, M. L., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24:573–582, 1996. doi: 10.1007/BF02684226.PubMedCrossRefGoogle Scholar
  13. 13.
    Rodriguez, J. F., C. Ruiz, M. Doblare, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130:021023, 2008. doi: 10.1115/1.2898830.PubMedCrossRefGoogle Scholar
  14. 14.
    Shum, J., E. S. DiMartino, A. Goldhammer, D. Goldman, L. Acker, G. Patel, J. H. Ng, G. Martufi, and E. A. Finol. Semi-automatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. (submitted).Google Scholar
  15. 15.
    Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39:1324–1334, 2006. doi: 10.1016/j.jbiomech.2005.03.003.CrossRefGoogle Scholar
  16. 16.
    Vande Geest, J. P., D. E. Schmidt, M. S. Sacks, and D. A. Vorp. The effect of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysm. Ann. Biomed. Eng. 36(6):921–932, 2008. doi: 10.1007/s10439-008-9490-3.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Jose F. Rodríguez
    • 1
  • Giampalo Martufi
    • 2
  • Manuel Doblaré
    • 1
  • Ender A. Finol
    • 3
  1. 1.Group of Structural Mechanics and Materials ModelingAragon Institute of Engineering Research (I3A) Torres Quevedo BuildingZaragozaSpain
  2. 2.Royal Institute of Technology, Department of Solid MechanicsStockholmSweden
  3. 3.Institute for Complex Engineered Systems, Biomedical Engineering Department and Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations