Annals of Biomedical Engineering

, Volume 37, Issue 11, pp 2288–2298 | Cite as

Effects of Autoregulation and CO2 Reactivity on Cerebral Oxygen Transport

  • S. J. PayneEmail author
  • J. Selb
  • D. A. Boas


Both autoregulation and CO2 reactivity are known to have significant effects on cerebral blood flow and thus on the transport of oxygen through the vasculature. In this paper, a previous model of the autoregulation of blood flow in the cerebral vasculature is expanded to include the dynamic behavior of oxygen transport through binding with hemoglobin. The model is used to predict the transfer functions for both oxyhemoglobin and deoxyhemoglobin in response to fluctuations in arterial blood pressure and arterial CO2 concentration. It is shown that only six additional nondimensional groups are required in addition to the five that were previously found to characterize the cerebral blood flow response. A resonant frequency in the pressure-oxyhemoglobin transfer function is found to occur in the region of 0.1 Hz, which is a frequency of considerable physiological interest. The model predictions are compared with results from the published literature of phase angle at this frequency, showing that the effects of changes in breathing rate can significantly alter the inferred phase dynamics between blood pressure and hemoglobin. The question of whether dynamic cerebral autoregulation is affected under conditions of stenosis or stroke is then examined.


Autoregulation Cerebral blood flow CO2 Transfer function Mathematical model Stroke 


  1. 1.
    Dawson, S. L., M. J. Blake, R. B. Panerai, and J. F. Potter. Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke. Cerebrovasc. Dis. 10:126–132, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Eames, P. J., M. J. Blake, S. L. Dawson, R. B. Panerai, and J. F. Potter. Dynamic cerebral autoregulation and beat to beat blood pressure control are impaired in acute ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 72:467–472, 2002.PubMedGoogle Scholar
  3. 3.
    Elwell, C. E., M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds. Identification of adult cerebral hemodynamics by near-infrared spectroscopy. J. Appl. Physiol. 77:2753–2760, 1994.PubMedGoogle Scholar
  4. 4.
    Grubb, R. L., M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian. The effects of changes in PaCO2 on cerebral volume, blood flow and vascular mean transit time. Stroke 5:630, 1974.PubMedGoogle Scholar
  5. 5.
    Mitsis, G. D., and V. Z. Marmarelis. Modeling of nonlinear physiological systems with fast and slow dynamics: I. Methodology. Ann. Biomed. Eng. 30:272–281, 2002.PubMedCrossRefGoogle Scholar
  6. 6.
    Mitsis, G. D., R. Zhang, B. D. Levine, and V. Z. Marmarelis. Modeling of nonlinear physiological systems with fast and slow dynamics: II. Application to cerebral autoregulation. Ann. Biomed. Eng. 30:555–565, 2002.PubMedCrossRefGoogle Scholar
  7. 7.
    Nilsson, H., and H. Aalkjaer. Vasomotion: mechanisms and physiological importance. Mol. Interv. 3:79–89, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Panerai, R. B. System identification of human cerebral blood flow regulatory mechanisms. Cardiovasc. Eng. 4:59–71, 2004.CrossRefGoogle Scholar
  9. 9.
    Panerai, R. B., S. L. Dawson, and J. F. Potter. Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am. J. Physiol. 277:H1089–H1099, 1999.PubMedGoogle Scholar
  10. 10.
    Panerai, R. B., D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans. Multivariate dynamic analysis of cerebral blood flow regulation in humans. IEEE Trans. Biomed. Eng. 47:419–423, 2000.PubMedCrossRefGoogle Scholar
  11. 11.
    Payne, S. J. A model of the interaction between autoregulation and neural activation in the brain. Math. Biosci. 204:260–281, 2006.PubMedCrossRefGoogle Scholar
  12. 12.
    Payne, S. J., and L. Tarassenko. Combined transfer function analysis and modelling of cerebral autoregulation. Ann. Biomed. Eng. 34:847–858, 2006.PubMedCrossRefGoogle Scholar
  13. 13.
    Peng, T., A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne. Multivariate system identification for cerebral autoregulation. Ann. Biomed. Eng. 36:308–320, 2008.PubMedCrossRefGoogle Scholar
  14. 14.
    Peng, T., A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne. Wavelet phase synchronization analysis of cerebral blood flow autoregulation. IEEE Trans. Biomed. Eng., in pressGoogle Scholar
  15. 15.
    Reinhard, M., T. Muller, B. Guschlbauer, J. Timmer, and A. Hetzel. Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation—a comparison between spontaneous and respiratory-induced oscillations. Physiol. Meas. 24:27–43, 2003.PubMedCrossRefGoogle Scholar
  16. 16.
    Reinhard, M., M. Roth, B. Guschlbauer, A. Harloff, J. Timmer, M. Czosnyka, and A. Hetzel. Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations. Stroke 36:1684–1689, 2005.PubMedCrossRefGoogle Scholar
  17. 17.
    Reinhard, M., M. Roth, T. Muller, B. Guschlbauer, J. Timmer, M. Czosnyka, and A. Hetzel. Effect of carotid endarterectomy or stenting on impairment of dynamic cerebral autoregulation. Stroke 35:1381–1387, 2004.PubMedCrossRefGoogle Scholar
  18. 18.
    Reinhard, M., E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel. Oscillatory cerebral hemodynamics—the macro- vs. microvascular level. J. Neurol. Sci. 250:103–109, 2006.PubMedCrossRefGoogle Scholar
  19. 19.
    Reivich, M. Arterial PCO2 and cerebral hemodynamics. Am. J. Physiol. 206:25–35, 1964.PubMedGoogle Scholar
  20. 20.
    Tiecks, F. P., A. M. Lam, R. Aaslid, and D. W. Newell. Comparison of static and dynamic cerebral autoregulatory measurements. Stroke 26:1014–1019, 1995.PubMedGoogle Scholar
  21. 21.
    Ursino, M., A. Ter Minassian, C. A. Lodi, and L. Beydon. Cerebral hemodynamics during arterial and CO2 pressure changes: in vivo prediction by a mathematical model. Am. J. Physiol. 279:H2439–H2455, 2000.Google Scholar
  22. 22.
    Vespa, P. What is the optimal threshold for cerebral perfusion pressure following traumatic brain injury? Neurosurg Focus 15(6):E4, 2003.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang, R., J. H. Zuckerman, C. A. Giller, and B. D. Levine. Transfer function analysis of dynamic cerebral autoregulation in humans. Am. J. Physiol. 274:H233–H241, 1998.PubMedGoogle Scholar
  24. 24.
    Zhang, R., J. H. Zuckerman, and B. D. Levine. Spontaneous fluctuations in cerebral blood flow: insights from extended duration recordings in humans. Am. J. Physiol. 278:H1848–H1855, 2000.Google Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  1. 1.Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
  2. 2.Photon Migration Imaging LaboratoryMassachusetts General HospitalCharlestownUSA

Personalised recommendations