Advertisement

Annals of Biomedical Engineering

, Volume 37, Issue 11, pp 2402–2406 | Cite as

Detection of Peripheral Nerve and Skeletal Muscle Action Currents Using Magnetic Resonance Imaging

  • Ranjith S. WijesingheEmail author
  • Bradley J. Roth
Article

Abstract

Many researchers have attempted to detect neural currents directly using magnetic resonance imaging (MRI). The action currents of a peripheral nerve or skeletal muscle create their own magnetic field that can cause the phase of the spins to change. Our goal in this paper is to use the measured magnetic field of a nerve or muscle to estimate the resulting phase shift in the magnetic resonance signal. We examine four cases: the squid giant axon, the frog sciatic nerve, the human median nerve, and the rat EDL muscle. In each case, the phase shift is much less than one tenth of one degree, and will be very difficult to measure with current technology.

Keywords

MRI Action currents Phase shift Nerve Muscle 

Notes

Acknowledgment

This research was supported by the National Institutes of Health Grant R01EB008421.

References

  1. 1.
    Bandettini, P. A., N. Petridou, and J. Bodurka. Direct detection of neuronal activity with MRI: fantasy, possibly, or reality? Appl. Magn. Reson. 29:65–88, 2005.CrossRefGoogle Scholar
  2. 2.
    Bodurka, J., and P. A. Bandettini. Toward direct mapping of neuronal activity: MRI detection of ultraweak transient magnetic field changes. Magn. Reson. Med. 47:1052–1058, 2002.PubMedCrossRefGoogle Scholar
  3. 3.
    Callaghan, P. T. Susceptibility-limited resolution in nuclear magnetic resonance microscopy. J. Magn. Reson. 87:304–318, 1990.Google Scholar
  4. 4.
    Cassara, A. M., G. E. Hagberg, M. Bianciardi, M. Migliore, and B. Maraviglia. Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI. NeuroImage 39:87–106, 2008.PubMedCrossRefGoogle Scholar
  5. 5.
    Cassara, A. M., and B. Maraviglia. Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI. NeuroImage 41:1228–1241, 2008.PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen, D. Magnetoencephalograph: evidence of magnetic fields produced by alpha-rhythm current. Science 161:784–786, 1968.PubMedCrossRefGoogle Scholar
  7. 7.
    Gielen, F. L. H., B. J. Roth, and J. P. Wikswo, Jr. Capabilities of a toroid-amplifier system for magnetic measurement of current in biological tissue. IEEE Trans. Biomed. Eng. 33:910–921, 1986.PubMedCrossRefGoogle Scholar
  8. 8.
    Gielen, F. L. H., R. N. Friedman, and J. P. Wikswo, Jr. In vivo magnetic and electric recordings from nerve bundles and single motor units in mammalian skeletal muscle. J. Gen. Physiol. 98:1043–1061, 1991.PubMedCrossRefGoogle Scholar
  9. 9.
    Hamalainen, M., R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Med. Phys. 65:413–497, 1993.CrossRefGoogle Scholar
  10. 10.
    Hennig, J., K. Zhong, and O. Speck. MR-Encephalography: fast multi-channel monitoring of brain physiology with magnetic resonance. NeuroImage 34:212–219, 2007.PubMedCrossRefGoogle Scholar
  11. 11.
    Hodgkin, A. L., and A. F. Huxley. A quantitative description of membrane current and its application to conductance and excitation in nerve. J. Physiol. 117:500–544, 1952.PubMedGoogle Scholar
  12. 12.
    Kamei, H., K. Iramina, K. Yoshlkawa, and S. Ueno. Neuronal current distribution imaging using magnetic resonance. IEEE Trans. Magn. 35:4109–4111, 1999.CrossRefGoogle Scholar
  13. 13.
    Kraus, Jr., R. H., P. Volegov, A. Matlachov, and M. Espy. Toward direct neural current imaging by resonant mechanisms at ultra-low field. NeuroImage 39:310–317, 2008.PubMedCrossRefGoogle Scholar
  14. 14.
    Ogawa, S., T. M. Lee, A. R. Kay, and D. W. Tank. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87:9868–9872, 1990.PubMedCrossRefGoogle Scholar
  15. 15.
    Paley, M. N. J., L. S. Chow, E. H. Whitby, and G. G. Cook. Modelling of axonal fields in the optic nerve for direct MR detection studies. Imag. Vision Comput. 27:331–341, 2009.CrossRefGoogle Scholar
  16. 16.
    Romani, G. L. Fundamentals on neuromagnetism. In: Advances in Biomagnetism, edited by S. J. Williamson, M. Hoke, G. Stroink, and M. Kotani. New York: Plenum Press, 1990, pp. 33–46.Google Scholar
  17. 17.
    Roth, B. J., and P. J. Basser. Mechanical model of neuronal tissue displacement during Lorentz effect imaging. Magn. Reson. Med. 61:59–64, 2009.PubMedCrossRefGoogle Scholar
  18. 18.
    Roth, B. J., and J. P. Wikswo, Jr. The magnetic field of a single nerve axon: a comparison of theory and experiment. Biophys. J. 48:93–109, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Swinney, K. R., and J. P. Wikswo, Jr. A calculation of the magnetic field of a nerve action potential. Biophys. J. 32:719–732, 1980.PubMedCrossRefGoogle Scholar
  20. 20.
    Truong, T.-K., and A. W. Song. Finding neuroelectric activity under magnetic-field oscillations (NAMO) with magnetic resonance imaging in vivo. Proc. Natl. Acad. Sci. USA 103:12598–12601, 2006.PubMedCrossRefGoogle Scholar
  21. 21.
    van Egeraat, J. M., R. N. Friedman, and J. P. Wikswo, Jr. Magnetic field of a single muscle fiber: first measurements and a core conductor model. Biophys. J. 57:663–667, 1990.PubMedCrossRefGoogle Scholar
  22. 22.
    van Egeraat, J. M., and J. P. Wikswo, Jr. A model for axonal propagation incorporating both radial and axial ionic transport. Biophys. J. 64:1287–1298, 1993.PubMedCrossRefGoogle Scholar
  23. 23.
    van Egeraat, J. M., R. Stasaski, J. P. Barach, R. N. Friedman, and J. P. Wikswo, Jr. The biomagnetic signature of a crushed axon: a comparison of theory and experiment. Biophys. J. 64:1299–1305, 1993.PubMedCrossRefGoogle Scholar
  24. 24.
    Wijesinghe, R. S., F. L. H. Gielen, and J. P. Wikswo, Jr. A model for compound action potentials and currents in a nerve bundle III: a comparison of the conduction velocity distributions calculated from compound action currents and potentials. Ann. Biomed. Eng. 19:97–121, 1991.PubMedCrossRefGoogle Scholar
  25. 25.
    Wikswo, Jr., J. P., and J. M. van Egeraat. Cellular magnetic fields: fundamental and applied measurements on nerve axons, peripheral nerve bundles, and skeletal muscle. J. Clin. Neurophysiol. 8:170–188, 1991.PubMedCrossRefGoogle Scholar
  26. 26.
    Wikswo, Jr., J. P., J. P. Barach, and J. A. Freeman. Magnetic field of a nerve impulse: first measurements. Science 208:53–55, 1980.PubMedCrossRefGoogle Scholar
  27. 27.
    Wikswo, Jr., J. P., W. P. Henry, R. N. Friedman, A. W. Kilroy, R. S. Wijesinghe, J. M. van Egeraat, and M. A. Milek. Intraoperative recording of the magnetic field of a human nerve. In: Advances in Biomagnetism, edited by S. J. Williamson, M. Hoke, G. Stroink, and M. Kotani. New York: Plenum Press, 1990, pp. 137–140.Google Scholar
  28. 28.
    Woosley, J. K., B. J. Roth, and J. P. Wikswo, Jr. The magnetic field of a single axon: a volume conductor model. Math. Biosci. 76:1–36, 1985.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  1. 1.Department of Physics and AstronomyBall State UniversityMuncieUSA
  2. 2.Department of PhysicsOakland UniversityRochesterUSA

Personalised recommendations