Annals of Biomedical Engineering

, Volume 37, Issue 9, pp 1757–1771 | Cite as

In Vivo Dynamic Deformation of the Mitral Valve Annulus

  • Chad E. Eckert
  • Brett Zubiate
  • Mathieu Vergnat
  • Joseph H. GormanIII
  • Robert C. Gorman
  • Michael S. SacksEmail author


Though mitral valve (MV) repair surgical procedures have increased in the United States [Gammie, J. S., et al. Ann. Thorac. Surg. 87(5):1431–1437, 2009; Nowicki, E. R., et al. Am. Heart J. 145(6):1058–1062, 2003], studies suggest that altering MV stress states may have an effect on tissue homeostasis, which could impact the long-term outcome [Accola, K. D., et al. Ann. Thorac. Surg. 79(4):1276–1283, 2005; Fasol, R., et al. Ann. Thorac. Surg. 77(6):1985–1988, 2004; Flameng, W., P. Herijgers, and K. Bogaerts. Circulation 107(12):1609–1613, 2003; Gillinov, A. M., et al. Ann. Thorac. Surg. 69(3):717–721, 2000]. Improved computational modeling that incorporates structural and geometrical data as well as cellular components has the potential to predict such changes; however, the absence of important boundary condition information limits current efforts. In this study, novel high definition in vivo annular kinematic data collected from surgically implanted sonocrystals in sheep was fit to a contiguous 3D spline based on quintic-order hermite shape functions with C2 continuity. From the interpolated displacements, the annular axial strain and strain rate, bending, and twist along the entire annulus were calculated over the cardiac cycle. Axial strain was shown to be regionally and temporally variant with minimum and maximum values of −10 and 4%, respectively, observed. Similarly, regionally and temporally variant strain rate values, up to 100%/s contraction and 120%/s elongation, were observed. Both annular bend and twist data showed little deviation from unity with limited regional variations, indicating that most of the energy for deformation was associated with annular axial strain. The regionally and temporally variant strain/strain rate behavior of the annulus are related to the varied fibrous-muscle structure and contractile behavior of the annulus and surrounding ventricular structures, although specific details are still unavailable. With the high resolution shape and displacement information described in this work, high fidelity boundary conditions can be prescribed in future MV finite element models, leading to new insights into MV function and strategies for repair.


Heart valves, Mitral valve, Mitral valve annulus Biomechanics Deformation Cardiac kinematics 



This work was made possible by NIH Grant HL-073021NIH, an American Heart Association Pre-Doctoral Fellowship (CEE), the NIH/NIBIB T32 “Biomechanics in Regenerative Medicine” training Grant (NIBIB T32 EB003392-01).


  1. 1.
    Accola, K. D., et al. Midterm outcomes using the physio ring in mitral valve reconstruction: experience in 492 patients. Ann. Thorac. Surg. 79(4):1276–1283, 2005; discussion 1276–1283.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmad, R. M., et al. Annular geometry and motion in human ischemic mitral regurgitation: novel assessment with three-dimensional echocardiography and computer reconstruction. Ann. Thorac. Surg. 78(6):2063–2068, 2004; discussion 2068.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson, R. H., et al. The myth of the aortic annulus: the anatomy of the subaortic outflow tract. Ann. Thorac. Surg. 52(3):640–646, 1991.PubMedGoogle Scholar
  4. 4.
    Black, M. M., et al. A three-dimensional analysis of a bioprosthetic heart valve. J. Biomech. 24:793–801, 1991.PubMedCrossRefGoogle Scholar
  5. 5.
    Braunberger, E., et al. Very long-term results (more than 20 years) of valve repair with Carpentier’s techniques in nonrheumatic mitral valve insufficiency. Circulation 104(12 Suppl 1):I8–I11, 2001.PubMedGoogle Scholar
  6. 6.
    Burriesci, G., I. C. Howard, and E. A. Patterson. Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J. Med. Eng. Technol. 23(6):203–215, 1999.PubMedCrossRefGoogle Scholar
  7. 7.
    Cacciola, G., G. W. Peters, and F. P. Baaijens. A synthetic fiber-reinforced stentless heart valve. J. Biomech. 33(6):653–658, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    Cacciola, G., G. W. Peters, and P. J. Schreurs. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33(5):521–530, 2000.PubMedCrossRefGoogle Scholar
  9. 9.
    Caiani, E. G., et al. Evaluation of alterations on mitral annulus velocities, strain, and strain rates due to abrupt changes in preload elicited by parabolic flight. J. Appl. Physiol. 103(1):80–87, 2007.PubMedCrossRefGoogle Scholar
  10. 10.
    Carpentier, A. Reconstructive valvuloplasty. A new technique of mitral valvuloplasty. Presse Med. 77(7):251–253, 1969.PubMedGoogle Scholar
  11. 11.
    Fasol, R., et al. Mitral valve repair with the Colvin-Galloway Future Band. Ann. Thorac. Surg. 77(6):1985–1988, 2004; discussion 1988.PubMedCrossRefGoogle Scholar
  12. 12.
    Filip, D. A., A. Radu, and M. Simionescu. Interstitial cells of the heart valve possess characteristics similar to smooth muscle cells. Circ. Res. 59(3):310–320, 1986.PubMedGoogle Scholar
  13. 13.
    Flameng, W., P. Herijgers, and K. Bogaerts. Recurrence of mitral valve regurgitation after mitral valve repair in degenerative valve disease. Circulation 107(12):1609–1613, 2003.PubMedCrossRefGoogle Scholar
  14. 14.
    Gammie, J. S., et al. Trends in mitral valve surgery in the United States: results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann. Thorac. Surg. 87(5):1431–1437, 2009; discussion 1437–1439.PubMedCrossRefGoogle Scholar
  15. 15.
    George, K., et al. Mitral annular myocardial velocity assessment of segmental left ventricular diastolic function after prolonged exercise in humans. J. Physiol. 569(Pt 1):305–313, 2005; (Epub 2005 Aug 18).PubMedCrossRefGoogle Scholar
  16. 16.
    Gillinov, A. M., et al. Durability of mitral valve repair for degenerative disease. J. Thorac. Cardiovasc. Surg. 116(5):734–743, 1998.PubMedCrossRefGoogle Scholar
  17. 17.
    Gillinov, A. M., et al. Cosgrove-Edwards Annuloplasty System: midterm results. Ann. Thorac. Surg. 69(3):717–721, 2000.PubMedCrossRefGoogle Scholar
  18. 18.
    Goldsmith, I. R., G. Y. Lip, and R. L. Patel. A prospective study of changes in the quality of life of patients following mitral valve repair and replacement. Eur. J. Cardiothorac. Surg. 20(5):949–955, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Gorman, 3rd, J. H., et al. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112(3):712–726, 1996.PubMedCrossRefGoogle Scholar
  20. 20.
    Gould, P. L., et al. Stress analysis of the human aortic valve. Comput. Struct. 3:377, 1973.CrossRefGoogle Scholar
  21. 21.
    Hamid, M. S., H. N. Sabbah, and P. D. Stein. Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. J. Biomech. 19:759–769, 1986.PubMedCrossRefGoogle Scholar
  22. 22.
    Hashima, A. R., et al. Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J. Biomech. 26:19–35, 1993.PubMedCrossRefGoogle Scholar
  23. 23.
    Hayashi, S. Y., et al. Analysis of mitral annulus motion measurements derived from M-mode, anatomic M-mode, tissue Doppler displacement, and 2-dimensional strain imaging. J. Am. Soc. Echocardiogr. 19(9):1092–1101, 2006.PubMedCrossRefGoogle Scholar
  24. 24.
    Hinton, E., and D. R. J. Owen. An Introduction to Finite Element Computations (1st ed.). Swansea, UK: Pineridge Press Limited, p. 385, 1979Google Scholar
  25. 25.
    Ho, S. Y. Anatomy of the mitral valve. Heart 88(Suppl 4):iv5–iv10, 2002.PubMedGoogle Scholar
  26. 26.
    Huang, X., et al. A two dimensional finite element analysis of a bioprosthetic heart valve. J. Biomech. 23:753–762, 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Krucinski, S., et al. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J. Biomech. 26:929–943, 1993.PubMedCrossRefGoogle Scholar
  28. 28.
    Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc. Surg. 5(4):427–434, 1997.PubMedCrossRefGoogle Scholar
  29. 29.
    Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Variations in annuloplasty ring and sizer dimensions may alter outcome in mitral valve repair. J. Card. Surg. 12(5):322–329, 1997.PubMedCrossRefGoogle Scholar
  30. 30.
    Leat, M. E., and J. Fisher. Comparative study of the function of the Abiomed polyurethane heart valve for use in left ventricular assist devices. J. Biomed. Eng. 15(6):516–520, 1993.PubMedCrossRefGoogle Scholar
  31. 31.
    Li, J., X. Y. Luo, and Z. B. Kuang. A nonlinear anisotropic model for porcine aortic heart valves. J. Biomech. 34(10):1279–1289, 2001.PubMedCrossRefGoogle Scholar
  32. 32.
    Messier, Jr., R. H., et al. Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J. Surg. Res. 57(1):1–21, 1994.PubMedCrossRefGoogle Scholar
  33. 33.
    Mulholland, D. L., and A. I. Gotlieb. Cell biology of valvular interstitial cells. Can. J. Cardiol. 12(3):231–236, 1996.PubMedGoogle Scholar
  34. 34.
    Nowicki, E. R., et al. Mitral valve repair and replacement in northern New England. Am. Heart J. 145(6):1058–1062, 2003.PubMedCrossRefGoogle Scholar
  35. 35.
    Quick, D. W., et al. Collagen synthesis is upregulated in mitral valves subjected to altered stress. ASAIO J. 43(3):181–186, 1997.PubMedCrossRefGoogle Scholar
  36. 36.
    Rabkin, E., et al. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in vitro maturation and in vivo remodeling. J. Heart Valve Dis. 11(3):308–314, 2002; discussion 314.PubMedGoogle Scholar
  37. 37.
    Rabkin-Aikawa, E., et al. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J. Heart Valve Dis. 13(5):841–847, 2004.PubMedGoogle Scholar
  38. 38.
    Sacks, M. S., et al. In vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82(4):1369–1377, 2006.PubMedCrossRefGoogle Scholar
  39. 39.
    Sacks, M. S., et al. In vivo biomechanical assessment of trigycidylamine crosslinked pericardium. Biomaterials 28(35):5390–5398, 2007.PubMedCrossRefGoogle Scholar
  40. 40.
    Salgo, I. S., et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717, 2002.PubMedCrossRefGoogle Scholar
  41. 41.
    Sands, M. P., et al. An anatomical comparison of human pig, calf, and sheep aortic valves. Ann. Thorac. Surg. 8(5):407–414, 1969.PubMedCrossRefGoogle Scholar
  42. 42.
    Smith, D. B., et al. Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng. 28(6):598–611, 2000.PubMedCrossRefGoogle Scholar
  43. 43.
    Stoylen, A., et al. Strain rate imaging in normal and reduced diastolic function: comparison with pulsed Doppler tissue imaging of the mitral annulus. J. Am. Soc. Echocardiogr. 14(4):264–274, 2001.PubMedCrossRefGoogle Scholar
  44. 44.
    Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127(6):905–914, 2005.PubMedCrossRefGoogle Scholar
  45. 45.
    Taylor, P. M., et al. The cardiac valve interstitial cell. Int. J. Biochem. Cell Biol. 35(2):113–118, 2003.PubMedCrossRefGoogle Scholar
  46. 46.
    Timek, T. A., et al. Aorto-mitral annular dynamics. Ann. Thorac. Surg. 76(6):1944–1950, 2003.PubMedCrossRefGoogle Scholar
  47. 47.
    Yacoub, M., et al. Surgical treatment of mitral regurgitation caused by floppy valves: repair versus replacement. Circulation 64(2 Pt 2):II210–II216, 1981.PubMedGoogle Scholar
  48. 48.
    Young, A. A., P. J. Hunter, and B. H. Smaill. Estimation of epicardial strain using the motions of coronary bifurcations in biplane cineangiography. IEEE Trans. Biomed. Eng. 39(5):526–531, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Chad E. Eckert
    • 1
  • Brett Zubiate
    • 1
  • Mathieu Vergnat
    • 2
  • Joseph H. GormanIII
    • 2
  • Robert C. Gorman
    • 2
  • Michael S. Sacks
    • 1
    Email author
  1. 1.Engineered Tissue Mechanics and Mechanobiology Laboratory, Department of Bioengineering, Swanson School of Engineering, The McGowan Institute, School of MedicineUniversity of PittsburghPittsburghUSA
  2. 2.Gorman Cardiovascular Research Laboratory, Harrison Department of Surgical ResearchUniversity Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations