Annals of Biomedical Engineering

, Volume 37, Issue 9, pp 1781–1795 | Cite as

Measurement of Solute Transport in the Endothelial Glycocalyx Using Indicator Dilution Techniques



A new method is presented to quantify changes in permeability of the endothelial glycocalyx to small solutes and fluid flow using techniques of indicator dilution. Following infusion of a bolus of fluorescent solutes (either FITC or FITC conjugated Dextran70) into the rat mesenteric circulation, its transient dispersion through post-capillary venules was recorded and analyzed offline. To represent dispersion of solute as a function of radial position in a microvessel, a virtual transit time (VTT) was calculated from the first moment of fluorescence intensity–time curves. Computer simulations and subsequent in vivo measurements showed that the radial gradient of VTT within the glycocalyx layer (ΔVTT/Δr) may be related to the hydraulic resistance within the layer along the axial direction in a post-capillary venule and the effective diffusion coefficient within the glycocalyx. Modeling the inflammatory process by superfusion of the mesentery with 10−7 M fMLP, ΔVTT/Δr was found to decrease significantly from 0.23 ± 0.08 SD s/μm to 0.18 ± 0.09 SD s/μm. Computer simulations demonstrated that ΔVTT/Δr is principally determined by three independent variables: glycocalyx thickness (δ), hydraulic resistivity (K r) and effective diffusion coefficient of the solute (D eff) within the glycocalyx. Based upon these simulations, the measured 20% decrease in ΔVTT/Δr at the endothelial cell surface corresponds to a 20% increase in D eff over a broad range in K r, assuming a constant thickness δ. The absolute magnitude of D eff required to match ΔVTT/Δr between in vivo measurements and simulations was found to be on the order of 2.5 × 10−3 × D free, where D free is the diffusion coefficient of FITC in aqueous media. Thus the present method may provide a useful tool for elucidating structural and molecular alterations in the glycocalyx as occur with ischemia, metabolic and inflammatory events.


Glycocalyx Indicator dispersion Solute transport Diffusion coefficient Hydraulic resistance 



This work was supported by NIH R01 HL-39286. The authors thank Ms. Anne Lescanic for her technical assistance.


  1. 1.
    Abrahamsson, T., U. Brandt, S. L. Marklund, and P. O. Sjoqvist. Vascular bound recombinant extracellular superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-dependent arterial relaxation. Circ. Res. 70:264–271, 1992.PubMedGoogle Scholar
  2. 2.
    Adamson, R. H. Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. J. Physiol. 428:1–13, 1990.PubMedGoogle Scholar
  3. 3.
    Adamson, R. H., and G. Clough. Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J. Physiol. 445:473–486, 1992.PubMedGoogle Scholar
  4. 4.
    Constantinescu, A. A., H. Vink, and J. A. Spaan. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler. Thromb. Vasc. Biol. 23:1541–1547, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Curry, F. E., and C. C. Michel. A fiber matrix model of capillary permeability. Microvasc. Res. 20:96–99, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Desjardins, C., and B. R. Duling. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am. J. Physiol. 258:H647–H654, 1990.PubMedGoogle Scholar
  7. 7.
    Gouverneur, M., B. Berg, M. Nieuwdorp, E. Stroes, and H. Vink. Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J. Intern. Med. 259:393–400, 2006.PubMedCrossRefGoogle Scholar
  8. 8.
    Huxley, V. H., and D. A. Williams. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am. J. Physiol. Heart Circ. Physiol. 278:H1177–H1185, 2000.PubMedGoogle Scholar
  9. 9.
    Lipowsky, H. H., L. E. Cram, W. Justice, and M. J. Eppihimer. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability. Microvasc. Res. 46:43–64, 1993.PubMedCrossRefGoogle Scholar
  10. 10.
    Lipowsky, H. H., and B. W. Zweifach. Application of the “two-slit” photometric technique to the measurement of microvascular volumetric flow rates. Microvasc. Res. 15:93–101, 1978.PubMedCrossRefGoogle Scholar
  11. 11.
    Luft, J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed. Proc. 25:1773–1783, 1966.PubMedGoogle Scholar
  12. 12.
    McKay, C. B., and H. H. Lipowsky. Arteriovenous distribution of transit times in cremaster muscle of the rat. Microvasc. Res. 36:75–91, 1988.PubMedCrossRefGoogle Scholar
  13. 13.
    Meier, P., and K. Zierler. On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6:731–744, 1954.PubMedGoogle Scholar
  14. 14.
    Michel, C. C., and F. E. Curry. Microvascular permeability. Physiol. Rev. 79:703–761, 1999.PubMedGoogle Scholar
  15. 15.
    Mulivor, A. W., and H. H. Lipowsky. Role of glycocalyx in leukocyte-endothelial cell adhesion. Am. J. Physiol. Heart Circ. Physiol. 283:H1282–H1291, 2002.PubMedGoogle Scholar
  16. 16.
    Mulivor, A. W., and H. H. Lipowsky. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 286:H1672–H1680, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Nugent, L. J., and R. K. Jain. Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed. Am. J. Physiol. 246:H129–H137, 1984.PubMedGoogle Scholar
  18. 18.
    Nugent, L. J., and R. K. Jain. Pore and fiber-matrix models for diffusive transport in normal and neoplastic tissues. Microvasc. Res. 28:270–274, 1984.PubMedCrossRefGoogle Scholar
  19. 19.
    Oohira, A., T. N. Wight, and P. Bornstein. Sulfated proteoglycans synthesized by vascular endothelial cells in culture. J. Biol. Chem. 258:2014–2021, 1983.PubMedGoogle Scholar
  20. 20.
    Pearson, M. J., and H. H. Lipowsky. Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 279:H1460–H1471, 2000.PubMedGoogle Scholar
  21. 21.
    Periasamy, N., and A. S. Verkman. Analysis of fluorophore diffusion by continuous distributions of diffusion coefficients: application to photobleaching measurements of multicomponent and anomalous diffusion. Biophys. J. 75:557–567, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Pittman, R. N., and M. L. Ellsworth. Estimation of red cell flow microvessels: consequences of the Baker-Wayland spatial averaging model. Microvasc. Res. 32:371–388, 1986.PubMedCrossRefGoogle Scholar
  23. 23.
    Potter, D. R., and E. R. Damiano. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ. Res. 102:770–776, 2008.PubMedCrossRefGoogle Scholar
  24. 24.
    Pries, A. R., T. W. Secomb, and P. Gaehtgens. The endothelial surface layer. Pflugers Arch. 440:653–666, 2000.PubMedCrossRefGoogle Scholar
  25. 25.
    Quinsey, N. S., A. L. Greedy, S. P. Bottomley, J. C. Whisstock, and R. N. Pike. Antithrombin: in control of coagulation. Int. J. Biochem. Cell Biol. 36:386–389, 2004.PubMedCrossRefGoogle Scholar
  26. 26.
    Reitsma, S., D. W. Slaaf, H. Vink, M. A. van Zandvoort, and M. G. Oude Egbrink. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 454:345–359, 2007.PubMedCrossRefGoogle Scholar
  27. 27.
    Secomb, T. W., R. Hsu, and A. R. Pries. A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. 274:H1016–H1022, 1998.PubMedGoogle Scholar
  28. 28.
    Sharan, M., and A. S. Popel. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38:415–428, 2001.PubMedGoogle Scholar
  29. 29.
    Smith, M. L., D. S. Long, E. R. Damiano, and K. Ley. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys. J. 85:637–645, 2003.PubMedCrossRefGoogle Scholar
  30. 30.
    Spaeth, E. E., and S. K. Friedlander. The diffusion of oxygen, carbon dioxide, and inert gas in flowing blood. Biophys. J. 7:827–851, 1967.PubMedCrossRefGoogle Scholar
  31. 31.
    Squire, J. M., M. Chew, G. Nneji, C. Neal, J. Barry, and C. Michel. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136:239–255, 2001.PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A 219:186–203, 1953.CrossRefGoogle Scholar
  33. 33.
    Taylor, G. Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. Lond. Ser. A 225:473–477, 1954.CrossRefGoogle Scholar
  34. 34.
    Vink, H., A. A. Constantinescu, and J. A. Spaan. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 101:1500–1502, 2000.PubMedGoogle Scholar
  35. 35.
    Vink, H., and B. R. Duling. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79:581–589, 1996.PubMedGoogle Scholar
  36. 36.
    Vink, H., and B. R. Duling. Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am. J. Physiol. Heart Circ. Physiol. 278:H285–H289, 2000.PubMedGoogle Scholar
  37. 37.
    Weinbaum, S., X. Zhang, Y. Han, H. Vink, and S. C. Cowin. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 100:7988–7995, 2003.PubMedCrossRefGoogle Scholar
  38. 38.
    Yayon, A., M. Klagsbrun, J. D. Esko, P. Leder, and D. M. Ornitz. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848, 1991.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhu, L., V. Castranova, and P. He. fMLP-stimulated neutrophils increase endothelial [Ca2+]i and microvessel permeability in the absence of adhesion: role of reactive oxygen species. Am. J. Physiol. Heart Circ. Physiol. 288:H1331–H1338, 2005.PubMedCrossRefGoogle Scholar
  40. 40.
    Zuurbier, C. J., C. Demirci, A. Koeman, H. Vink, and C. Ince. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J. Appl. Physiol. 99:1471–1476, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  1. 1.Department of BioengineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations