Annals of Biomedical Engineering

, Volume 37, Issue 10, pp 2118–2128 | Cite as

Embroidered and Surface Modified Polycaprolactone-Co-Lactide Scaffolds as Bone Substitute: In Vitro Characterization

  • Barbe Rentsch
  • Andre Hofmann
  • Annette Breier
  • Claudia Rentsch
  • Dieter Scharnweber


The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2–1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.


Bone substitute Scaffold Polycaprolactone-co-lactide Collagen I Chondroitin sulfate 



The authors would like to acknowledge the Bundesminesteriunm für Bildung und Forschung (0314041C) and the company Möckel embroidery and engineering (Auerbach, Germany) for producing the PCL scaffolds.


  1. 1.
    Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28(20):3074–82, 2007.CrossRefPubMedGoogle Scholar
  2. 2.
    Atthoff B, Hilborn J. Protein adsorption onto polyester surfaces: is there a need for surface activation? J Biomed Mater Res B Appl Biomater 80(1):121–30, 2007.PubMedGoogle Scholar
  3. 3.
    Becker D, Geissler U, Hempel U, Bierbaum S, Scharnweber D, Worch H, Wenzel KW. Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy. J Biomed Mater Res 59(3):516–27, 2002.CrossRefPubMedGoogle Scholar
  4. 4.
    Bierbaum S, Douglas T, Hanke T, Scharnweber D, Tippelt S, Monsees TK, Funk RH, Worch H. Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: characterization and influence on osteoblastic cells. J Biomed Mater Res A 77(3):551–62, 2006.PubMedGoogle Scholar
  5. 5.
    Bismarck A, Pfaffernoschke M, Selimoic M, Springer J. Electrokinetic and contact angle measurements of grafted carbon fibers. Colloid Polym Sc 276:1110–1116, 1998. doi: 10.1007/s003960050352 CrossRefGoogle Scholar
  6. 6.
    Bramfeldt H, Sarazin P, Vermette P. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-ε-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-ε-caprolactone). J Biomed Mater Res A 83(2):503–11, 2007.PubMedGoogle Scholar
  7. 7.
    Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2(3):187–20, 1991. doi: 10.1002/jab.770020307 CrossRefPubMedGoogle Scholar
  8. 8.
    Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci USA 103(8):2488–93, 2006.CrossRefPubMedGoogle Scholar
  9. 9.
    den Dunnen WF, Robinson PH, van Wessel R, Pennings AJ, van Leeuwen MB, Schakenraad JM. Long-term evaluation of degradation and forein-body reaction of subcutaneously implanted poly(DL-lactide-epsiloncaprolactone). J Biomed Mater Res 36(3):337–46, 1997.CrossRefGoogle Scholar
  10. 10.
    Douglas T, Heinemann S, Mietrach C, Hempel U, Bierbaum S, Scharnweber D, Worch H. Interactions of collagen types I and II with chondroitin sulfates A-C and their effect on osteoblast adhesion. Biomacromolecules 8(4):1085–92, 2007.CrossRefPubMedGoogle Scholar
  11. 11.
    Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 9(8):2097–103, 2008.CrossRefPubMedGoogle Scholar
  12. 12.
    Erisken C, Kalyon DM, Wang H. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29(30):4065–73, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Feldkamp LA, Davis LC, and Kress JW. Practical conebeam algorithm. J Opt Soc Amer; Vol. A1, pp. 612–619, 1984. doi: 10.1364/JOSAA.1.000612 CrossRefGoogle Scholar
  14. 14.
    Geissler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel K. Collagen type I-coating of Ti6Al4 V promotes adhesion of osteoblasts. J Biomed Mater Res 51(4):752–60, 2000.CrossRefPubMedGoogle Scholar
  15. 15.
    Gugala Z, Gogolewski S. Differentiation, growth and activity of rat bone marrow stromal cells on resorbable poly(L/DL-lactide) membranes. Biomaterials 25(12):2299–307, 2004.CrossRefPubMedGoogle Scholar
  16. 16.
    Ho ST and Hutmacher DW. A comparison of micro CT with other techniques used in the characterisation of scaffolds. Biomaterials 27(8):1362–76, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Hollinger JO, Brekke J, Gruskin E, Lee D. Role of bone substitutes. Clin Orthop Relat Res 324:55–65, 1996. doi: 10.1097/00003086-199603000-00008 CrossRefPubMedGoogle Scholar
  18. 18.
    Hubbell JA. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14(5):551–8, 2003. doi: 10.1016/j.copbio.2003.09.004 CrossRefPubMedGoogle Scholar
  19. 19.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–43, 2001.CrossRefPubMedGoogle Scholar
  20. 20.
    Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues–state of the art and future perspectives. J Biomater Sci Polym Ed 12(1):107–24, 2001. doi: 10.1163/156856201744489 CrossRefPubMedGoogle Scholar
  21. 21.
    Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–16, 2001.CrossRefPubMedGoogle Scholar
  22. 22.
    Kay S, Thapa A, Haberstroh KM, Webster TJ. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 8(5):753–61, 2002.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee JH, Khang G, Lee JW, Lee HB. Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient. J Colloid Interface Sci 205(2):323–330, 1998.CrossRefPubMedGoogle Scholar
  24. 24.
    Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26(25):5158–66, 2005.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–86, 2004.CrossRefPubMedGoogle Scholar
  26. 26.
    Manton KJ, Leong FM, Cool SM, Nurcombe V. Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell derived osteogenic differentiation via BMP signaling pathways. Stem Cells 25(11):2845–54, 2007.CrossRefPubMedGoogle Scholar
  27. 27.
    Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 26(16):3075–82, 2005.CrossRefPubMedGoogle Scholar
  28. 28.
    Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 27(32):5561–71, 2006.CrossRefPubMedGoogle Scholar
  29. 29.
    Rebouillat S, Letellier B, Steffino B. Wettability of single fibres-beyond the contact angle approach. Int J Adhesion & Adhesives 19:303–314, 1999. doi: 10.1016/S0143-7496(99)00006-8 CrossRefGoogle Scholar
  30. 30.
    Rentsch, C., B. Rentsch, A. Breier, A. Hofmann, S. Manthey, D. Scharnweber, A. Biewener, and H. Zwipp. Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate scaffolds subcutaneously implanted in nude rats. J. Biomed. Mater. Res. A, 2009 [Epub ahead of print].Google Scholar
  31. 31.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–31, 2006.CrossRefPubMedGoogle Scholar
  32. 32.
    Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–65, 2004.CrossRefPubMedGoogle Scholar
  33. 33.
    Schmack G, Gliesche K, Nitschke M and Werner C. Implantate auf Basis von Poly(3-hydroxybuttersäure). BIOmaterialien 3:21–25, 2002.Google Scholar
  34. 34.
    Schneiders, W., A. Reinstorf, M. Ruhnow, S. Rehberg, J. Heineck, I. Hinterseher, A. Biewener, H. Zwipp, and S. Rammelt. Effect of chondroitin sulphate on material properties and bone remodelling around hydroxyapatite/collagen composites. J. Biomed. Mater. Res. A 85(3):638–645, 2007.Google Scholar
  35. 35.
    Schulze M. Calibration of computer tomography system by applying photogrammetry approaches. Grün, A.; Kahmen H. (Eds.): Optical 3-D Measurement Techniques VIII. Vol., pp., Institute of Geodesy and Photogrammetry, ETH Zürich, 2007Google Scholar
  36. 36.
    Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 11(1):51–9, 1997.PubMedGoogle Scholar
  37. 37.
    Tomihata K, Suzuki M, Oka T Ikada Y. A new resorbable monofilament suture. Polym. Degrad. Stab. 59(51):13–18, 1998. doi: 10.1016/S0141-3910(97)00183-3 CrossRefGoogle Scholar
  38. 38.
    Tullberg-Reinert H, Jundt G. In situ measurement of collagen synthesis by human bone cells with a sirius red-based colorimetric microassay: effects of transforming growth factor beta2 and ascorbic acid 2-phosphate. Histochem Cell Biol 112(4):271–6, 1999.CrossRefPubMedGoogle Scholar
  39. 39.
    van Susante JLC, Pieper J, Buma P, van Kuppevelt TH, van Beuningen H, van Der Kraan PM, Veerkamp JH, van den Berg WB, Veth RPH. Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials 22(17):2359–69, 2001.CrossRefPubMedGoogle Scholar
  40. 40.
    Wollenweber M, Domaschke H, Hanke T, Boxberger S, Schmack G, Gliesche K, Scharnweber D, Worch H. Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng 12(2):345–59, 2006.CrossRefPubMedGoogle Scholar
  41. 41.
    Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JA, Clark SG, Wheeler MB, Jamison RD, Wagoner Johnson AJ. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28(1):45–54, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Barbe Rentsch
    • 1
  • Andre Hofmann
    • 2
  • Annette Breier
    • 3
  • Claudia Rentsch
    • 4
  • Dieter Scharnweber
    • 2
  1. 1.Catgut GmbHMarkneukirchenGermany
  2. 2.Max Bergmann Center of BiomaterialsDresdenGermany
  3. 3.Leibniz Institute of Polymer Research DresdenDresdenGermany
  4. 4.Trauma and Reconstructive SurgeryUniversity Hospital Carl Gustav Carus DresdenDresdenGermany

Personalised recommendations