Annals of Biomedical Engineering

, Volume 37, Issue 8, pp 1483–1494

Hemodynamically Driven Stent Strut Design

Article

Abstract

Stents are deployed to physically reopen stenotic regions of arteries and to restore blood flow. However, inflammation and localized stent thrombosis remain a risk for all current commercial stent designs. Computational fluid dynamics results predict that nonstreamlined stent struts deployed at the arterial surface in contact with flowing blood, regardless of the strut height, promote the creation of proximal and distal flow conditions that are characterized by flow recirculation, low flow (shear) rates, and prolonged particle residence time. Furthermore, low shear rates yield an environment less conducive for endothelialization, while local flow recirculation zones can serve as micro-reaction chambers where procoagulant and pro-inflammatory elements from the blood and vessel wall accumulate. By merging aerodynamic theory with local hemodynamic conditions we propose a streamlined stent strut design that promotes the development of a local flow field free of recirculation zones, which is predicted to inhibit thrombosis and is more conducive for endothelialization.

Keywords

Streamlined stent Stent strut design Hemodynamics Shear Endothelium Coagulation 

References

  1. 1.
    Alkhamis, T. M., R. L. Beissinger, J. R. Chediak. Red blood cell effect on platelet adhesion and aggregation in low-stress shear flow. Myth or fact? ASAIO Trans. 34:868-873, 1988.PubMedGoogle Scholar
  2. 2.
    Astrand, P., K. Rodahl, H. A. Dahl, S. B. Stromme. Textbook of Work Physiology: Physiological Bases of Exercise. Champaign: Human Kinetics, 2003.Google Scholar
  3. 3.
    Auriti, A., C. Cianfrocca, C. Pristipino, S. Greco, M. Galeazzi, V. Guido, M. Santini. Improving feasibility of posterior descending coronary artery flow recording by transthoracic Doppler echocardiography. Eur. J. Echocardiogr. 4:214–220, 2003.PubMedCrossRefGoogle Scholar
  4. 4.
    Berry, J. L., A. Santamarina, J. E. Moore, S. Roychowdhury, W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2000.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen, M. C., P. C. Lu, J. S. Chen, N. H. Hwang. Computational hemodynamics of an implanted coronary stent based on three-dimensional cine angiography reconstruction. ASAIO J. 51:313–320, 2005.PubMedCrossRefGoogle Scholar
  6. 6.
    Chiu J., C. Chen, P. Lee, C. Yang, H. Chuang, S. Chien, S. Usami. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J. Biomech. 36:1883–1895, 2003.PubMedCrossRefGoogle Scholar
  7. 7.
    Choi, H. W., A. I. Barakat. Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step. Biorheology. 42:493-50, 2005.PubMedGoogle Scholar
  8. 8.
    Cutnell, J., K. Johnson. Physics, New York: Wiley, 1998.Google Scholar
  9. 9.
    DeBakey, M. E., G. C. Morris, R. O. Morgen, E. S. Crawford, D. A. Cooley. Lesions of the renal artery. surgical technic and results. Am. J. Surg. 107:84-96, 1964.PubMedCrossRefGoogle Scholar
  10. 10.
    Diamond, S. L., S. G. Eskin, L. V. McIntire. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science. 243:1483-1485, 1989.PubMedCrossRefGoogle Scholar
  11. 11.
    Dibra, A., A. Kastrati, J. Mehilli, J. Pache, R. von Oepen, J. Dirschinger, A. Schömig. Influence of stent surface topography on the outcomes of patients undergoing coronary stenting: a randomized double-blind controlled trial. Catheter Cardiovasc. Interv. 65:374-380, 2005.PubMedCrossRefGoogle Scholar
  12. 12.
    Finn, A. V., M. Joner, G. Nakazawa, F. Kolodgie, J. Newell, M. C. John, H. K. Gold, R. Virmani. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 115:2435–2441, 2007.PubMedCrossRefGoogle Scholar
  13. 13.
    Frangos, J. A., S. G. Eskin, L. V. McIntire, C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 227:1477-1479, 1985.PubMedCrossRefGoogle Scholar
  14. 14.
    Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients Circ. Res. 22:165-197, 1968.PubMedGoogle Scholar
  15. 15.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.Google Scholar
  16. 16.
    Garasic, J. M., E. R. Edelman, J. C. Squire, P. Seifert, M. S. Williams, C. Rogers. Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation. 101:812-818, 2000.PubMedGoogle Scholar
  17. 17.
    Grabowski, E. F., E. A. Jaffe, B. B. Weksler. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. Clin. Med. 105:36–43, 1985.PubMedGoogle Scholar
  18. 18.
    Hamuro, M., J. C. Palmaz, E. A. Sprague, C. Fuss, J. Luo. Influence of stent edge angle on endothelialization in an in vitro model. J. Vasc. Interv. Radiol. 12:607-611, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    He, Y., N. Duraiswamy, A. O. Frank, J. E. Moore. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J. Biomech. Eng. 127:637–647, 2005.PubMedCrossRefGoogle Scholar
  20. 20.
    Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, H. Schühlen, F. J. Neumann, M. Fleckenstein, C. Pfafferott, M. Seyfarth, A. Schömig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 103:2816–2821, 2001.PubMedGoogle Scholar
  21. 21.
    Ku, D. N. Blood Flow in Arteries. Annu. Rev. Fluid Mech. 29:399-434, 1997CrossRefGoogle Scholar
  22. 22.
    Ku, D. N., D. P. Giddens. Pulsatile flow in a model carotid bifurcation. Arterioscler. Thromb. Vasc. Biol. 3:31-39, 1983.Google Scholar
  23. 23.
    Kumar, V., R. S. Cotran, S. L. Robbins. Basic Pathology. Philadelphia: W. B. Saunders Company, 1997.Google Scholar
  24. 24.
    LaDisa, J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, P. S. Pagel. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31:972-980, 2003.PubMedCrossRefGoogle Scholar
  25. 25.
    LaDisa, J. F., D. A. Hettrick, L. E. Olson, I. Guler, E. R. Gross, T. T. Kress, J. R. Kersten, D. C. Warltier, P. S. Pagel. Stent implantation alters coronary artery hemodynamics and wall shear stress during maximal vasodilation. J. Appl. Physiol. 93:1939–1946, 2002.PubMedGoogle Scholar
  26. 26.
    LaDisa, J. F., L. E. Olson, D. A. Hettrick, D. C. Warltier, J. R. Kersten, P. S. Pagel. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening. Biomed. Eng. Online. 4:59, 2005.PubMedCrossRefGoogle Scholar
  27. 27.
    Marks, D. S., J. A. Vita, J. D. Folts, J. F. Keaney, G. N. Welch, J. Loscalzo, Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J. Clin. Invest. 96:2630–2638, 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Mattsson, E. J. R., T. R. Kohler, S. M. Vergel, A. W. Clowes, Increased blood flow induces regression of intimal hyperplasia. Arterioscler. Thromb. Vasc. Biol. 17:2245-2249, 1997.PubMedGoogle Scholar
  29. 29.
    Nguyen, N. D., A. K. Haque, Effect of hemodynamic factors on atherosclerosis in the abdominal aorta. Atherosclerosis. 84:33-39, 1990.PubMedCrossRefGoogle Scholar
  30. 30.
    Noris, M., M. Morigi, R. Donadelli, S. Aiello, M. Foppolo, M. Todeschini, S. Orisio, G. Remuzzi, A. Remuzzi. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ. Res. 76:536-543, 1995.PubMedGoogle Scholar
  31. 31.
    Pache, J., A. Kastrati, J. Mehilli, H. Schühlen, F. Dotzer, J. Hausleiter, M. Fleckenstein, F. J. Neumann, U. Sattelberger, C. Schmitt, M. Müller, J. Dirschinger, A. Schömig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J. Am. Coll. Cardiol. 41:1289-1292, 2003.CrossRefGoogle Scholar
  32. 32.
    Passerini, A. G., D. C. Polacek, C. Shi, N. M. Francesco, E. Manduchi, G. R. Grant, W. F. Pritchard, S. Powell, G. Y. Chang, C. J. Stoeckert, P. F. Davies. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl. Acad. Sci. U.S.A. 101:2482-2487, 2004.PubMedCrossRefGoogle Scholar
  33. 33.
    Reininger, A. J., H. F. G. Heijnen, H. Schumann, H. M. Specht, W. Schramm, Z. M. Ruggeri, Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood. 107:3537-3545, 2006.PubMedCrossRefGoogle Scholar
  34. 34.
    Roache, P. J. Verification and Validation in Computational Science and Engineering. Albuquerque: Hermosa Publishers, 1998.Google Scholar
  35. 35.
    Rogers, C., E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation. 91:2995-3001, 1995.PubMedGoogle Scholar
  36. 36.
    Rogers, C., D. Y. Tseng, J. C. Squire, E. R. Edelman. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378-383, 1999.PubMedGoogle Scholar
  37. 37.
    Sanmartín, M., J. Goicolea, C. García, J. García, A. Crespo, J. Rodríguez, J. M. Goicolea. Influence of shear stress on in-stent restenosis: in vivo study using 3D reconstruction and computational fluid dynamics. Rev. Esp. Cardiol. 59:20-27, 2006.PubMedCrossRefGoogle Scholar
  38. 38.
    Seo, T., L. G. Schachter, A. I. Barakat. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann. Biomed. Eng. 33:444-456, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Shankaran, H., P. Alexandridis, S. Neelamegham. Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood. 101:2637-2645, 2003.PubMedCrossRefGoogle Scholar
  40. 40.
    Simon, C., J. C. Palmaz, E. A. Sprague. Influence of topography on endothelialization of stents: clues for new designs. J. Long Term Eff. Med. Implants. 10:143-151, 2000.PubMedGoogle Scholar
  41. 41.
    Sprague, E. A., J. Luo, J. C. Palmaz. Human aortic endothelial cell migration onto stent surfaces under static and flow conditions. J. Vasc. Interv. Radiol. 8:83-92, 1997.PubMedCrossRefGoogle Scholar
  42. 42.
    Stamler, J., M. E. Mendelsohn, P. Amarante, D. Smick, N. Andon, P. F. Davies, J. P. Cooke, J. Loscalzo. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ. Res. 65:789-795, 1989.PubMedGoogle Scholar
  43. 43.
    Stone, G. W., J. W. Moses, S. G. Ellis, J. Schofer, K. D. Dawkins, M. C. Morice, A. Colombo, E. Schampaert, E. Grube, A. J. Kirtane, D. E. Cutlip, M. Fahy, S. J. Pocock, R. Mehran, M. B. Leon. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med. 356:998-1008, 2007.PubMedCrossRefGoogle Scholar
  44. 44.
    Sun, R. J., S. Muller, X. Wang, F. Y. Zhuang, J. F. Stoltz. Regulation of von Willebrand factor of human endothelial cells exposed to laminar flows: an in vitro study. Clin. Hemorheol. Microcirc. 23:1-11, 2000.PubMedGoogle Scholar
  45. 45.
    Suo, J., D. E. Ferrara, D. Sorescu, R. E. Guldberg, W. R. Taylor, D. P. Giddens. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol. 27:346-351, 2007.PubMedCrossRefGoogle Scholar
  46. 46.
    Topol, E. J. Coronary–artery stents—Gauging, Gorging, and Gouging. N. Engl. J. Med. 339:1702–1704, 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    von der Leyen, H. E., G. H. Gibbons, R. Morishita, N. P. Lewis, L. Zhang, M. Nakajima, Y. Kaneda, J. P. Cooke, V. J. Dzau. In vivo gene transfer to prevent neointima hyperplasia after vascular injury: effect of overexpression of constitutive nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 92:1137-1141, 1995.PubMedCrossRefGoogle Scholar
  48. 48.
    Wentzel, J. J., R. Krams, J. C. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van Der Giessen, P. W. Serruys, C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation. 103:1740-1745, 2001.PubMedGoogle Scholar
  49. 49.
    Yamamoto, T., Y. Ogasawara, A. Kimura, H. Tanaka, O. Hiramatsu, K. Tsujioka, M. J. Lever, K. H. Parker, C. J. H. Jones, C. G. Caro, F. Kajiya. Blood velocity profiles in the human renal artery by doppler ultrasound and their relationship to atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 16:172-177, 1996.PubMedGoogle Scholar
  50. 50.
    Yutani, C., M. Imakita, H. Ishibashi-Ueda, A. Yamamoto, S. Takaichi. Localization of lipids and cell population in atheromatous lesions in aorta and its main arterial branches in patients with hypercholesterolemia. In: Role of Blood Blow in Atherogenesis, edited by R. M. Nerem, S. Glagov, T. Yamaguchi, Y. Yoshida, C. G. Caro, Tokyo: Springer-Verlag, 1988, pp. 25–31.Google Scholar
  51. 51.
    Zarins, C. K., D. P. Giddens, B. K. Bharadavaj, V. S. Sottiurai, R. F. Mabon, S. Glagov. Carotid bifurcation atherosclerosis. quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502–514, 1983.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  1. 1.Institute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations