Annals of Biomedical Engineering

, Volume 37, Issue 8, pp 1495–1515 | Cite as

Cardiac Flow Analysis Applied to Phase Contrast Magnetic Resonance Imaging of the Heart

  • Kelvin K. L. WongEmail author
  • Richard M. Kelso
  • Stephen G. Worthley
  • Prashanthan Sanders
  • Jagannath Mazumdar
  • Derek Abbott


Phase contrast magnetic resonance imaging is performed to produce flow fields of blood in the heart. The aim of this study is to demonstrate the state of change in swirling blood flow within cardiac chambers and to quantify it for clinical analysis. Velocity fields based on the projection of the three dimensional blood flow onto multiple planes are scanned. The flow patterns can be illustrated using streamlines and vector plots to show the blood dynamical behavior at every cardiac phase. Large-scale vortices can be observed in the heart chambers, and we have developed a technique for characterizing their locations and strength. From our results, we are able to acquire an indication of the changes in blood swirls over one cardiac cycle by using temporal vorticity fields of the cardiac flow. This can improve our understanding of blood dynamics within the heart that may have implications in blood circulation efficiency. The results presented in this paper can establish a set of reference data to compare with unusual flow patterns due to cardiac abnormalities. The calibration of other flow-imaging modalities can also be achieved using this well-established velocity-encoding standard.


Velocity-encoding Phase contrast magnetic resonance imaging Vorticity Cardiac flow analysis 



The authors thank the Royal Adelaide Hospital for the supply of magnetic resonance images, and to Payman Molaee for his assistance in scanning the subject used in this research. Special thanks are also extended to Fangli Xiong from Nanyang Technological University (Singapore) and the reviewers of this paper. Their comments and suggestions, which have made the paper more meaningful and interesting, are gratefully acknowledged.


  1. 1.
    S. Achenbach, S. Ulzheimer, U. Baum, M. Kachelriess, D. Ropers, T. Giesler, W. Bautz, W. G. Daniel, W. A. Kalender, and W. Moshage. Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation, 102:2823, 2000.PubMedGoogle Scholar
  2. 2.
    C. Baltes, S. Kozerke, M. S. Hansen, K. P. Pruessmann, J. Tsao, and P. Boesiger. Accelerating cine phase-contrast flow measurements using k-t BLAST and k-t SENSE. Magnet. Reson. Med., 54(6):1430–1438, 2005.CrossRefGoogle Scholar
  3. 3.
    H. G. Bogren and M. H. Buonocore. 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J. Magn. Reson. Imag., 10(5):861–869, 1999.CrossRefGoogle Scholar
  4. 4.
    H. G. Bogren, M. H. Buonocore, and R. J. Valente. Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. Journal of Magnetic Resonance Imaging, 19:417–427, 2004.CrossRefGoogle Scholar
  5. 5.
    E. Brandt, T. Ebbers, L. Wigström, J. Engvall, and M. Karlsson. Automatic detection of vortical flow patterns from three-dimensional phase contrast MRI. Proc. Int. Soc. Magnet. Reson. Med., 9:1838, 2001.Google Scholar
  6. 6.
    Chandran, K. B. Cardiovascular Biomechanics. New York University Biomedical Engineering Series, New York University Press, 1992.Google Scholar
  7. 7.
    K. B. Chandran, A. Wahle, S. C. Vigmostad, M. E. Olszewski, J. D. Rossen, and M. Sonka. Coronary arteries: Imaging, reconstruction, and fluid dynamic analysis. Crit. Rev. Biomed. Eng., 34(1):23–103, 2006.PubMedGoogle Scholar
  8. 8.
    Chandran, K. P., A. P. Yoganathan, and S. E. Rittgers. Biofluid Mechanics: The Human Circulation. CRC Press, Taylor & Francis Group, 2006.Google Scholar
  9. 9.
    Chaoui R., Taddei F., Rizzo G., Bast C., Lenz F., Bollmann R. (2002) Doppler echocardiography of the main stems of the pulmonary arteries in the normal human fetus. Ultrasound Obst. Gyn. 11(3):173–179CrossRefGoogle Scholar
  10. 10.
    Y. P. Du, E. R. McVeigh, D. A. Bluemke, H. A. Silber, and T. K.F. Foo. A comparison of prospective and retrospective respiratory navigator gating in 3D MR coronary angiography. Int. J. Cardiovasc. Imag., 17(4):287–294, 2001.CrossRefGoogle Scholar
  11. 11.
    T. Ebbers, L. Wigström, A. F. Bolger, B. Wranne, and M. Karlsson. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J. Biomech. Eng., 124(3):288–293, 2002.PubMedCrossRefGoogle Scholar
  12. 12.
    R. R. Edelman. Contrast-enhanced MR imaging of the heart: Overview of the literature. Radiology, 232:653–668, 2004.PubMedCrossRefGoogle Scholar
  13. 13.
    C. J. Elkins, M. Markl, A. Iyengar, R. Wicker, and J. Eaton. Full field velocity and temperature measurements using magnetic resonance imaging in turbulent complex internal flows. Int. J. Heat Fluid Flow, 25:702–710, 2004.CrossRefGoogle Scholar
  14. 14.
    A. Etebari and P. P. Vlachos. Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp. Fluids, 39(6):1040–1050, 2005.CrossRefGoogle Scholar
  15. 15.
    Ferziger, J. H., and M. Peric. Computational Methods for Fluid Dynamics, 3rd edn. Springer, 2001, Number ISBN: 3540420746.Google Scholar
  16. 16.
    J. M. Foucaut and M. Stanislas. Some considerations on the accuracy and frequency response of some derivative filters applied to particle image velocimetry vector fields. Meas. Sci. Technol., 13:1058–1071, 2002.CrossRefGoogle Scholar
  17. 17.
    Freedom, R. M., S.-J. Yoo, H. Mikailian, and W. Williams. The Natural and Modified History of Congenital Heart Disease. Blackwell Publishing, 2003.Google Scholar
  18. 18.
    G. M. Friesen, T. C. Jaqnnett, M. A. Jadallah, S. L. Yates, S. R. Quint, and H. T. Nagle. A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Bio-Med. Eng., 37:85, 1990.CrossRefGoogle Scholar
  19. 19.
    A. Fyrenius, T. Ebbers, L. Wigström, M. Karlsson, B. Wranne, A. F. Bolger, and J. Engvall. Left atrial vortices studied with 3D phase contrast MRI. Clin. Physiol. Funct. Imag., 19(3):195, 1999.Google Scholar
  20. 20.
    A. Fyrenius, L. Wigström, T. Ebbers, M. Karlsson, J. Engvall, and A. F. Bolger. Three dimensional flow in the human left atrium. Heart, 86:448–455, 2001.PubMedCrossRefGoogle Scholar
  21. 21.
    J. M. Gardin, H. W. Sung, A. P. Yoganathan, J. Ball, S. McMillan, and W. L. Henry. Doppler flow velocity mapping in an in vitro model of the normal pulmonary artery. J. Am. Coll. Cardiol., 12:1366–1376, 1988.PubMedCrossRefGoogle Scholar
  22. 22.
    Gertsch, M., and C. P. Cannon. The ECG: A Two-Step Approach to Diagnosis. Springer, 2003.Google Scholar
  23. 23.
    M. Gharib, E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. A global index for heart failure based on optimal vortex formation in the left ventricle. Proc. Natl. Acad. Sci. USA (PNAS), 103(16):6305–6308, 2006.CrossRefGoogle Scholar
  24. 24.
    Ghista, N. D. Applied Biomedical Engineering Mechanics. CRC Press, 2008.Google Scholar
  25. 25.
    Ghista, N. D., and E. Y.-K. Ng. Cardiac Perfusion and Pumping Engineering (Clinically-Oriented Biomedical Engineering). World Scientific Publishing Company, 2007.Google Scholar
  26. 26.
    F. P. Glor, J. J. M. Westenberg, J. Vierendeels, M. Danilouchkine, and P. Verdonck. Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend. Artif. Organs, 26(7):622–635, 2008.CrossRefGoogle Scholar
  27. 27.
    R. C. Gonzalez and R. E. Woods. Digital Image Processing, 2nd edition. Prentice-Hall, Inc., New Jersey, USA, 2002.Google Scholar
  28. 28.
    H. Hasegawa, W. C. Little, M. Ohno, S. Brucks, A. Morimoto, H.-J. Cheng, and C.-P. Cheng. Diastolic mitral annular velocity during the development of heart failure. Journal of the American College of Cardiology, 41:1590–1597, 2003.PubMedCrossRefGoogle Scholar
  29. 29.
    Hatle, L., and B. Angelsen. Doppler Ultrasound in Cardiology: Physical Principles and Clinical Applications, 2nd edn. Philadelphia: Lea and Febiger, 1982.Google Scholar
  30. 30.
    Herold, V., P. Mörchel, C. Faber, E. Rommel, A. Haase, and P. M. Jakob. In vivo quantitative three-dimensional motion mapping of the murine myocardium with PC-MRI at 17.6 T. Magn. Reson. Med. 55:1058–1064, 2006.PubMedCrossRefGoogle Scholar
  31. 31.
    C. Kasai, K. Namekawa, A. Koyano, and R. Omoto. Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans. Sonics Ultrasonics, 32(3):458–464, 1985.Google Scholar
  32. 32.
    P. J. Kilner, G-Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nat. Med., 404:759–761, 2000.CrossRefGoogle Scholar
  33. 33.
    I. Koktzoglou, A. Kirpalani, T. J. Carroll, D. Li, and J. C. Carr. Dark-blood MRI of the thoracic aorta with 3D diffusion-prepared steady-state free precession: Initial clinical evaluation. Am. Roentgen Ray Soc., 189:966–972, 2007.Google Scholar
  34. 34.
    A. C. Larson, R. D. White, G. Laub, E. R. McVeigh, D. Li, and O. P. Simonetti. Self-gated cardiac cine MRI. Magnetic Resonance in Medicine, 51(1):93–102, 2004.CrossRefGoogle Scholar
  35. 35.
    S. Ley, J. Ley-Zaporozhan, K. Kreitner, S. Iliyushenko, M. Puderbach, W. Hosch, H. Wenz, J. Schenk, and H. Kauczor. MR flow measurements for assessment of the pulmonary, systemic and bronchosystemic circulation: Impact of different ECG gating methods and breathing schema. Eur. J. Radiol., 61(1):124–129, 2007.PubMedCrossRefGoogle Scholar
  36. 36.
    Lodha, S. K., A. Pang, R. E. Sheehan, and C. M. Wittenbrink. UFLOW: Visualizing uncertainty in fluid flow. In: Seventh IEEE Visualization 1996 (VIS '96), pp. 249–254, 1996.Google Scholar
  37. 37.
    L. Loevstakken, S. Bjaerum, D. Martens, and H. Torp. Real-time blood motion imaging v a 2D blood flow visualization technique. IEEE Ultrasonics Symp., 1:602–605, 2004.Google Scholar
  38. 38.
    Q. Long, X. Y. Xu, U. Köhler, M. B. Robertson, I. Marshall, and P. Hoskins. Quantitative comparison of CFD predicted and MRI measured velocity fields in a carotid bifurcation phantom. Biorheology, 39(3-4):467–474, 2002.PubMedGoogle Scholar
  39. 39.
    J. Lotz, C. Meier, A. Leppert, and M. Galanski. Cardiovascular flow measurement with phase-contrast MR imaging: Basic facts and implementation. Radiographics, 22:651–671, 2002.PubMedGoogle Scholar
  40. 40.
    S. E. Maier, D. Meier, P. Boesiger, U. T. Moser, and A. Vieli. Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology, 171:487–492, 1989.PubMedGoogle Scholar
  41. 41.
    M. Mark, A. Harloff, T. A. Bley, M. Zaitsev, B. Jung, E. Weigang, M. Langer, J. Hennig, and A. Frydrychowicz. Time-resolved 3D MR velocity mapping at 3T: Improved navigator-gated assessment of vascular anatomy and blood flow. J. Magn. Reson. Imag., 25:824–831, 2007.CrossRefGoogle Scholar
  42. 42.
    M. Markl, F. P. Chan, M. T. Alley, K. L. Wedding, M. T. Draney, C. J. Elkins, D. W. Parker, R. Wicker R, C. A. Taylor, R. J. Herfkens, and N. J. Pelc. Time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imag., 17:499–506, 2003.CrossRefGoogle Scholar
  43. 43.
    M. Markl, M. T. Draney, M. D. Hope, J. M. Levin, F. P. Chan, M. T. Alley, N. J. Pelc, and R. J. Herfkens. Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J. Comput. Assist. Tomogr., 28:459–468, 2004.PubMedCrossRefGoogle Scholar
  44. 44.
    G. Mielke and N. Benda. Blood flow velocity waveforms of the fetal pulmonary artery and the ductus arteriosus: reference ranges from 13 weeks to term. Ultrasound Obst. Gyn., 15(3):213–218, 2002.CrossRefGoogle Scholar
  45. 45.
    U. Morbiducci, R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. a numeric study. J. Biomech., 40(3):519–534, 2007.PubMedCrossRefGoogle Scholar
  46. 46.
    U. Morbiducci, R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevecchi, and A. Redaelli. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng., 37(3):516–531, 2009.PubMedCrossRefGoogle Scholar
  47. 47.
    G. J. Morgan-Hughes, A. J. Marshall, and C. Roobottom. Morphologic assessment of patent ductus arteriosus in adults using retrospectively ECG-gated multidetector CT. Am. J. Roentgenol., 181:749–754, 2003.Google Scholar
  48. 48.
    J. Narula, M. A. Vannan, and A. N. DeMaria. Of that waltz in my heart. J. Am. Coll. Cardiol., 49:917–920, 2007.PubMedCrossRefGoogle Scholar
  49. 49.
    G. M. Nijm, A. V. Sahakian, S. Swiryn, J. C. Carr, J. J. Sheehan, and A. C. Larson. Comparison of self-gated cine MRI retrospective cardiac synchronization algorithms. Journal of Magnetic Resonance Imaging, 28(3):767–772, 2008.CrossRefGoogle Scholar
  50. 50.
    S. Oyre, E. M. Pedersen, S. Ringgaard, P. Boesiger, and W. P. Paaske. In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta. Eur. J. Vasc. Endovasc. Surg., 13:263–271, 1997.PubMedCrossRefGoogle Scholar
  51. 51.
    S. Oyre, S. Ringgaard, S. Kozerke, W. P. Paaske, M. Erlandsen, P. Boesiger, and E. M. Pedersen. Accurate noninvasive quantitation of blood flow, crosssectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data. J. Am. Coll. Cardiol., 32:128–134, 1998.PubMedCrossRefGoogle Scholar
  52. 52.
    J. Pan and W. J. Tompkins. A real-time QRS detection algorithm. IEEE Trans. Bio-Med. Eng., 32(3):230–236, 1985.CrossRefGoogle Scholar
  53. 53.
    O. Pierrakos and P. P. Vlachos. The effect of vortex formation on left ventricular filling and mitral valve efficiency. J. Biomech. Eng.-Trans. ASME, 128(4):527–539, 2006.CrossRefGoogle Scholar
  54. 54.
    G. Plehn, J. Vormbrock, T. Butz, M. Christ, H-J. Trappe, and A. Meissner. Different effect of exercise on left ventricular diastolic time and interventricular dyssynchrony in heart failure patients with and without left bundle branch block. Int. J. Med. Sci., 5:333–340, 2008.PubMedGoogle Scholar
  55. 55.
    A. J. Powell, S. E. Maier, T. Chung, and T. Geva. Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: In vitro and in vivo validation. Pediatr. Cardiol., 21:104–110, 2000.PubMedCrossRefGoogle Scholar
  56. 56.
    M. Raffel, C. Willert, and J. Kompenhans. Particle Image Velocimetry. Springer-Verlag, Berlin Heidelberg, Germany, 1998.Google Scholar
  57. 57.
    Raguin, L. G., S. L. Honecker, and J. G. Georgiadis. MRI velocimetry in microchannel networks. In: 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, 2005, pp. 319–322.Google Scholar
  58. 58.
    T. Schenkel, M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Annals of Biomedical Engineering, 37(3):503–515, 2009.PubMedCrossRefGoogle Scholar
  59. 59.
    G. R. Shaw and P. Savard. On the detection of QRS variations in the ECG. IEEE Trans. Bio-Med. Eng., 42(7):736–741, 1995.CrossRefGoogle Scholar
  60. 60.
    F. W. Stallmann and H. V. Pipberger. Automatic recognition of electrocardiographic waves by digital computer. Circ. Res., 9:1138–1143, 1961.PubMedGoogle Scholar
  61. 61.
    Tang, A., D. Kacher, E. Lam, M. Brodsky, F. Jolesz, and E. Yang. Multi-modal imaging: simultaneous MRI and ultrasound imaging for carotid arteries visualization. In: Proceedings of the 29th Annual International Conference of the IEEE (EMBS 2007), Lyon, France, 2007, pp. 2603–2606.Google Scholar
  62. 62.
    K. S. L. Teo, K. Roberts-Thomson, and S. G. Worthley. Utility of intravascular ultrasound in the diagnosis of ambiguous calcific left main stenoses. J. Invasive Cardiol., 16:385, 2004.PubMedGoogle Scholar
  63. 63.
    M. Tetsuya. ECG gating in cardiac MRI. Jpn. J. Magnet. Reson. Med., 23(4):120–130, 2003.Google Scholar
  64. 64.
    R. B. Thompson and E. R. McVeigh. Flow-gated phase-contrast MRI using radial acquisitions. Magnet. Reson. Med., 52(3):598–604, 2004.CrossRefGoogle Scholar
  65. 65.
    P. E. Trahanias. An approach to QRS complex detection using mathematical morphology. IEEE Trans. Bio-Med. Eng., 40(2):201–205, 1993.CrossRefGoogle Scholar
  66. 66.
    R. Uterhinninghofen, S. Ley, J. Zaporozhan, G. Szabö, and R. Dillmann. A versatile tool for flow analysis in 3D-phase-contrast magnetic resonance imaging. Int. J. Comput. Assist. Radiol. Surg., 1(1):107–117, 2006.CrossRefGoogle Scholar
  67. 67.
    R. S. Vasan, M. G. Larson, E. J. Benjamin, J. C. Evans, C. K. Reiss, and D. Levy. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction. Journal of the American College of Cardiology, 33:1948–1955, 1999.PubMedCrossRefGoogle Scholar
  68. 68.
    A. Wahle, J. J. Lopezd, M. E. Olszewskia, S. C. Vigmostadb, K. B. Chandran, J. D. Rossenc, and M. Sonkaa. Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med. Image Anal., 10(4):615–631, 2006.PubMedCrossRefGoogle Scholar
  69. 69.
    G. Webb and M. A. Gatzoulis. Atrial septal defects in the adult - recent progess and overview. Circulation, 114:1645–1653, 2006.PubMedCrossRefGoogle Scholar
  70. 70.
    L. Wigstrom, L. Sjoqvist, and B. Wranne. Temporally resolved 3D phase contrast imaging. Magnet. Reson. Med., 36:800–803, 1996.CrossRefGoogle Scholar
  71. 71.
    A. B. Wolbarst. Looking Within How X-ray, CT, MRI, Ultrasound, and Other Medical Images are Created, and How They Help Physicians Save Lives. University of California Press, USA, 1999.Google Scholar
  72. 72.
    K. K. L. Wong, R. M. Kelso, S. G. Worthley, P. Sanders, J. Mazumdar, and D. Abbott. Medical imaging and processing methods for cardiac flow reconstruction. J. Mech. Med. Biol., 9(1):1–20, 2009.CrossRefGoogle Scholar
  73. 73.
    K. K. L. Wong, R. M. Kelso, S. G. Worthley, P. Sanders, J. Mazumdar, and D. Abbott. Theory and validation of magnetic resonance fluid motion estimation using intensity flow data. PLoS ONE, 4(3):e4747, 2009.PubMedCrossRefGoogle Scholar
  74. 74.
    S. Yamashita, H. Isoda, M. Hirano, H. Takeda, S. Inagawa, Y. Takehara, M. T. Alley, M. Markl, N. J. Pelc, and H. Sakahara. Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. Journal of Magnetic Resonance Imaging, 25:473–478, 2007.CrossRefGoogle Scholar
  75. 75.
    G. Z. Yang, R. H. Mohiaddin, P. J. Kilner, and D. N. Firmin. Vortical flow feature recognition: A topological study of in-vivo flow patterns using MR velocity mapping. J. Comput. Assist. Tomogr., 22:577–586, 1998.PubMedCrossRefGoogle Scholar
  76. 76.
    S. Z. Zhao, P. Papathanasopoulou, Q. Long, I. Marshall, and X. Y. Xu. Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom. Ann. Biomed. Eng., 31(8):962–971, 2003.PubMedCrossRefGoogle Scholar
  77. 77.
    M. R. Zile and D. L. Brutsaert. New concepts in diastolic dysfunction and diastolic heart failure: Part I. Circulation, 105:1387–1393, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Kelvin K. L. Wong
    • 1
    • 3
    Email author
  • Richard M. Kelso
    • 2
  • Stephen G. Worthley
    • 3
  • Prashanthan Sanders
    • 3
  • Jagannath Mazumdar
    • 1
  • Derek Abbott
    • 1
  1. 1.Center for Biomedical Engineering and School of Electrical & Electronics EngineeringUniversity of AdelaideAdelaideAustralia
  2. 2.School of Mechanical EngineeringUniversity of AdelaideAdelaideAustralia
  3. 3.Cardiovascular Research Centre and School of MedicineUniversity of AdelaideAdelaideAustralia

Personalised recommendations