Annals of Biomedical Engineering

, Volume 37, Issue 7, pp 1322–1330 | Cite as

Evaluation of Human Endothelial Cells Post Stent Deployment in a Cardiovascular Simulator In Vitro

  • Marie A. Punchard
  • Eoin D. O’Cearbhaill
  • Joseph N. Mackle
  • Peter E. McHugh
  • Terry J. Smith
  • Catherine Stenson-Cox
  • Valerie BarronEmail author


Percutaneous stent implantation has revolutionized the clinical treatment of occluded arteries. Nevertheless, there is still a large unmet need to prevent re-occlusion after implantation. Consequently, a niche exists for a cost-effective pre-clinical method of evaluating novel interventional devices in human models. Therefore, the development of a coronary model artery offers tremendous potential for the treatment of endothelial cell dysfunction and restenosis. As a first step, we employ tissue-engineering principles to examine the effect of stent deployment upon endothelial cells in a tubular in vitro system capable of replicating the coronary artery biomechanical environment. In particular, the cellular and molecular changes pertaining to inflammation, proliferation, and death were assessed after stent deployment. Real-time quantitative PCR demonstrated increased expression of genes encoding for E-Selectin, ICAM-1, and VCAM-1; markers associated with an inflammatory response in vivo. Further, an increase in the pro-apoptotic protein Bax was paralleled with a decrease in the anti-apoptotic protein Bcl-2; however, apoptotic morphology was not observed. Interestingly, transcription of c-fos increased, whereas Ki67 levels fell over the same period. One hypothesis is that these results are in response to the altered local hemodynamic environment induced by stent deployment. Most significantly, this study highlights the potential of a biomimetic hemodynamic bioreactor combined with a gene expression analysis to evaluate, with greater specificity, the performance and interaction of stents with the endothelial layer in a controlled environment.


Stent Pre-clinical evaluation Model human artery Stent deployment in vitro Cellular response 



This work was supported by grants from the Program for Research in Third Level Institutions, administered by the Higher Education Authority, the Enterprise Ireland Commercialization Fund for Technology Development (CFTD/03/409) and the European Union Framework 6 Marie Curie Transfer of Knowledge Programme (MTKD-CT-2004-509853).


  1. 1.
    Akimoto, S., M. Mitsumata, T. Sasaguri, and Y. Yoshida. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1). Circ. Res. 86:185–190, 2000.PubMedGoogle Scholar
  2. 2.
    Andersson M., L. Karlsson, P.A. Svensson, E. Ulfhammer, M. Ekman, M. Jernås, L.M.S. Carlsson, and S. Jern. Differential global gene expression response patterns of human endothelium exposed to shear stress and intraluminal pressure. J Vasc Res. 42:441–452, 2005. doi: 10.1159/000087983 PubMedCrossRefGoogle Scholar
  3. 3.
    Ando, J., H. Tsuboi, R. Korenaga, Y. Takada, N. Toyama-Sorimachi, M. Miyasaka, and A. Kamiya. Shear stress inhibits adhesion of cultured mouse endothelial cells to lymphocytes by downregulating VCAM-1 expression. Am. J. Physiol. Cell. Physiol. 267:C679–687, 1994.Google Scholar
  4. 4.
    Aoyagi, M., M. Yamamoto, H. Wakimoto, H. Azuma, K. Hirakawa and K. Yamamoto. Immunohistochemical detection of Ki-67 in replicative smooth muscle cells of rabbit carotid arteries after balloon denudation. Stroke. 26:2328–2332, 1995.PubMedGoogle Scholar
  5. 5.
    Benbrahim, A., G.J. L’Italien, C.J. Kwolek, M.J. Petersen, B. Milinazzo, J.P Gertler, W.M. Abbott, and R.W. Orkin. Characteristics of vascular wall cells subjected to dynamic cyclic strain and fluid shear conditions in vitro. J. Surg. Res. 65:119–127, 1996. doi: 10.1006/jsre.1996.0353 PubMedCrossRefGoogle Scholar
  6. 6.
    Bernard, N.C.D., E. Donal, and R. Perrault. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intrastent wall shear stress. J Biomech. 36:991–998, 2003. doi: 10.1016/S0021-9290(03)00068-X CrossRefGoogle Scholar
  7. 7.
    Berry, J.L., E. Manoach, C. Mekkaoui, P.H. Rolland, J.E. Moore Jr, and A. Rachev. Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis. J. Vasc. Interv. Radiol. 13:97-105, 2002. doi: 10.1016/S1051-0443(07)60015-3 PubMedCrossRefGoogle Scholar
  8. 8.
    Berry, J.L., A. Santamarina, J.E. Jr Moore, S. Roychowdhury, and W.D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386-398, 2000. doi: 10.1114/1.276 PubMedCrossRefGoogle Scholar
  9. 9.
    Butcher, J.T., and R.M. Nerem. Porcine aortic valve interstitial cells in three-dimensional culture: comparison of phenotype with aortic smooth muscle cells. J Heart Valve Dis. 13:478-485, 2004.PubMedGoogle Scholar
  10. 10.
    Chappell, D.C., S.E. Varner, R.M. Nerem, R.M. Medford, and R.W. Alexander. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ. Res. 82:532-539, 1998.PubMedGoogle Scholar
  11. 11.
    Chien, S., S. Li, and Y.J. Shyy. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension. 31:162-169, 1998.PubMedGoogle Scholar
  12. 12.
    Chiu, J.J., L.J. Chen, C.N. Chen, P.L. Lee and C.I. Lee. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J Biomech. 37:531-539, 2004. doi: 10.1016/j.jbiomech.2003.08.012 PubMedCrossRefGoogle Scholar
  13. 13.
    Chiu, J.J., L.J. Chen, P.L. Lee, C.I. Lee, L.W. Lo, S. Usami, and S. Chien. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood. 101:2667-2674, 2003. doi: 10.1182/blood-2002-08-2560 PubMedCrossRefGoogle Scholar
  14. 14.
    Edelman, E.R., and C. Rogers. Hoop Dreams: Stents without restenosis. Circulation. 94:1199-1202, 1996.PubMedGoogle Scholar
  15. 15.
    Edelman, E.R., and C. Rogers. Pathobiologic responses to stenting. Am. J. Cardiol. 81:4E-6E, 1998. doi: 10.1016/S0002-9149(98)00189-1 PubMedCrossRefGoogle Scholar
  16. 16.
    Farivar, R.S., L.H. Cohn, E.G. Soltesz, T. Mihaljevic, J.D. Rawn and J.G. Byrne. Transcriptional profiling and growth kinetics of endothelium reveals differences between cells derived from porcine aorta versus aortic valve. Eur J Cardiothorac Surg. 24:527-534, 2003. doi: 10.1016/S1010-7940(03)00408-1 PubMedCrossRefGoogle Scholar
  17. 17.
    Garg, R., B.F. Uretsky, and E.I. Lev. Anti-platelet and anti-thrombotic approaches in patients undergoing percutaneous coronary intervention. Catheter Cardiovasc Interv. 70:388-406, 2007. doi: 10.1002/ccd.21204 PubMedCrossRefGoogle Scholar
  18. 18.
    Gimbrone M.A. Jr. Vascular endothelium, hemodynamic forces, and atherogenesis. Am J Pathol. 155:1-5, 1999.PubMedGoogle Scholar
  19. 19.
    Gimbrone, M.A. Jr., J.N. Topper, T. Nagel, K.R. Anderson, and G. Garcia-Cardena. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. N. Y. Acad. Sci. 902:230-240, 2000.PubMedCrossRefGoogle Scholar
  20. 20.
    Grewe, P.H., T. Deneke, A. Machraoui, J. Barmeyer and K.M. Müller. Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen. J Am Coll Cardiol. 35:157-163, 2000. doi: 10.1016/S0735-1097(99)00486-6 PubMedCrossRefGoogle Scholar
  21. 21.
    He,Y., N. Duraiswamy, A.O. Frank, and J.E. Moore Jr. (2005) Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J Biomech Eng 127:637-647. doi: 10.1115/1.1934122 PubMedCrossRefGoogle Scholar
  22. 22.
    He, W., T. Yong, W.E. Teo, Z. Ma and S. Ramakrishna. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng. 11:1574-1588, 2005. doi: 10.1089/ten.2005.11.1574 PubMedCrossRefGoogle Scholar
  23. 23.
    Heider, P.W.M., W. Weiss, HJ. Berger, HH. Eckstein, and O. Wolf. Role of adhesion molecules in the induction of restenosis after angioplasty in the lower limb. J. Vasc. Surg. 43:969-977, 2006. doi: 10.1016/j.jvs.2005.11.061 PubMedCrossRefGoogle Scholar
  24. 24.
    Hsiai, TK., SK. Cho, S. Reddy, S. Hama, M. Navab. Pulsatile flow regulates monocyte adhesion to oxidized lipid-induced endothelial cells. Arterioscler. Thromb. Vasc. Biol. 21:1770-1776, 2001. doi: 10.1161/hq1001.097104 PubMedCrossRefGoogle Scholar
  25. 25.
    Kilickap, M, E. Tutar, O. Aydintug, G. Pamir, C. Erol, H. Tutkak, and D. Oral. Increase in soluble E-selectin level after PTCA and stent implantation: a potential marker of restenosis. Int J Cardiol. 93:13-18, 2004. doi: 10.1016/S0167-5273(03)00111-6 PubMedCrossRefGoogle Scholar
  26. 26.
    Livak, KJ., and TD. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402-408, 2001.PubMedCrossRefGoogle Scholar
  27. 27.
    Malik, N., S.E. Francis, C.M. Holt, J. Gunn, G.L. Thomas, L. Shepherd, J. Chamberlain, C.M. Newman, D.C. Cumberland, and D.C. Crossman. Apoptosis and cell proliferation after porcine coronary angioplasty. Circulation. 98:1657-1665, 1998.PubMedGoogle Scholar
  28. 28.
    McLucas, E., M.T. Moran, Y. Rochev, W.M. Carroll, and T.J. Smith. An investigation into the effect of surface roughness of stainless steel on human umbilical vein endothelial cell gene expression. Endothelium. 13:35-41, 2006. doi: 10.1080/10623320600660185 PubMedCrossRefGoogle Scholar
  29. 29.
    Miyauchi, K., T. Kasai, T. Yokayama, K. Aihara, T. Kurata, K. Kajimoto, S. Okazaki, H. Ishiyama, and H. Daida. Effectiveness of statin-eluting stent on early inflammatory response and neointimal thickness in a porcine coronary model. Circ J. 72:832-838, 2008. doi: 10.1253/circj.72.832 PubMedCrossRefGoogle Scholar
  30. 30.
    Monraats, P.S., F. de Vries, L.W. de Jong, D. Pons, V.D. Sewgobind, A.H. Zwinderman, M.P.M. de Maat, L.M. ‘t Hart, P.A. Doevendans, R.J. de Winter, R.A. Tio, J. Waltenberger, R.R. Frants, A. van der Laarse, E.E. van der Wall, and J. Wouter Jukema. Inflammation and apoptosis genes and the risk of restenosis after percutaneous coronary intervention. Pharmacogenet. Genomics 16:747-754, 2006.PubMedCrossRefGoogle Scholar
  31. 31.
    Monraats, P.S., N.M.M. Pires, W.R.P. Agema, A.H. Zwinderman, A. Schepers, M.P.M. de Maat, P.A. Doevendans, R.J. de Winter, R.A. Tio, J. Waltenberger, R.R. Frants, P HA. Quax, B.J.M. van Vlijmen, DE. Atsma, A. van der Laarse, E.E. Van der Wall, J. W. Jukema. Genetic inflammatory factors predict restenosis after percutaneous coronary interventions. Circulation. 112:2417-2425, 2005. doi: 10.1161/CIRCULATIONAHA.105.536268 PubMedCrossRefGoogle Scholar
  32. 32.
    Moore, J. Jr., and Berry, J.L. Fluid and solid mechanical implications of vascular stenting. Ann. Biomed. Eng. 30:498-508, 2002. doi: 10.1114/1.1458594 PubMedCrossRefGoogle Scholar
  33. 33.
    Moore, J.E. Jr., E. Bürki, A. Suciu, S. Zhao, M. Burnier, H.R. Brunner, and J.J. Meister. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch. Ann.Biomed. Eng. 22:416-422, 1994. doi: 10.1007/BF02368248 PubMedCrossRefGoogle Scholar
  34. 34.
    Murasaki, K., M. Kawana, S. Murasaki, Y. Tsurumi, K. Tanoue, N. Hagiwara, and H. Kasanuki. High P-selectin expression and low CD36 occupancy on circulating platelets are strong predictors of restenosis after coronary stenting in patients with coronary artery disease. Heart Vessels. 22:229-236, 2007. doi: 10.1007/s00380-006-0966-5 PubMedCrossRefGoogle Scholar
  35. 35.
    Nagel, T., N. Resnik, W.J. Atkinson, C.F. Jr. Dewey, and M.A. Jr Gimbrone. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest. 94:885-891, 1994. doi: 10.1172/JCI117410 PubMedCrossRefGoogle Scholar
  36. 36.
    Nagel, T., N. Resnick, C.F. Jr. Dewey, and M.A. Jr Gimbrone. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19:1825-1834, 1999.PubMedGoogle Scholar
  37. 37.
    O’Cearbhaill, E.D., M.A. Punchard, M. Murphy, F.P. Barry, P.E. McHugh, and V. Barron. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials. 29:1610-1619, 2008. doi: 10.1016/j.biomaterials.2007.11.042 PubMedCrossRefGoogle Scholar
  38. 38.
    O’Halloran-Cardinal, K., G.T. Bonnema, H. Hofer, J.K. Barton, and S.K. Williams. Tissue-engineered vascular grafts as in vitro blood vessel mimics for the evaluation of endothelialization of intravascular devices. Tissue Eng. 12:3431-3438, 2006. doi: 10.1089/ten.2006.12.3431 CrossRefGoogle Scholar
  39. 39.
    Ohtsuka, A., J. Ando, R. Korenaga, A. Kamiya, N. Toyama-Sorimachi, and M. Miyasaka. The effect of flow on the expression of vascular adhesion molecule-1 by cultured mouse endothelial cells. Biochem. Biophys. Res. Commun. 193:303-310, 1993. doi: 10.1006/bbrc.1993.1624 PubMedCrossRefGoogle Scholar
  40. 40.
    Peacock, J., S. Hankins, T. Jones, and R. Lutz. Flow instabilities induced by coronary artery stents: assessment with an in vitro pulse duplicator. J. Biomech. 28:17-26, 1995. doi: 10.1016/0021-9290(95)80003-4 PubMedCrossRefGoogle Scholar
  41. 41.
    Peng, X., F.A. Recchia, B.J. Byrne, I.S. Wittstein, R.C. Ziegelstein, and D.A. Kass. In vitro system to study realistic pulsatile flow and stretch signaling in cultured vascular cells. Am. J. Physiol. Cell Physiol. 279:C797-805, 2000.PubMedGoogle Scholar
  42. 42.
    Punchard, M.A., C. Stenson-Cox, E.D. O’Cearbhaill, E. Lyons, S. Gundy, L. Murphy, A. Pandit, P.E. McHugh, and V. Barron. Endothelial cell response to biomechanical forces under simulated vascular loading conditions. J. Biomech. 40:3146-3154, 2007. doi: 10.1016/j.jbiomech.2007.03.029 PubMedCrossRefGoogle Scholar
  43. 43.
    Qiu, Y., and J.M. Tarbell. Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production. J. Vasc. Res. 37:147-157, 2000. doi: 10.1159/000025726 PubMedCrossRefGoogle Scholar
  44. 44.
    Rasband, W. ImageJ. Bethesda, MD: U. S. National Institutes of Health, 1997–2006.
  45. 45.
    Rogers, C., D.Y. Tseng, J.C. Squire, and E.R. Edelman. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378-383, 1999.PubMedGoogle Scholar
  46. 46.
    Rolland, P.H., A.B. Charifi, C. Verrier, H. Bodard, A. Friggi, P. Piquet, G. Moulin, and J.M. Bartoli. Hemodynamics and wall mechanics after stent placement in swine iliac arteries: comparative results from six stent designs. Radiology. 213:229-246, 1999.PubMedGoogle Scholar
  47. 47.
    Sampath, R., G.L. Kukielka, C.W. Smith, S.G. Eskin, and L.V. McIntire. Shear stress-mediated changes in the expression of leukocyte adhesion receptors on human umbilical vein endothelial cells in vitro. Ann. Biomed. Eng. 23:247-256, 1995. doi: 10.1007/BF02584426 PubMedCrossRefGoogle Scholar
  48. 48.
    Shimizu, N., H. Suzuki, K. Wakabayashi, Y. Iso, M. Shibata, M. Yorozuya, T. Katagiri, and Y. Takeyama. Expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in the pig coronary artery injury model: comparison of plain old balloon angioplasty and stent implantation. J. Cardiol. 43:131-139, 2004 (abstract).PubMedGoogle Scholar
  49. 49.
    Shirinsky, V., A. Antonov, K. Birukov, A. Sobolevsky, Y. Romanov, N.V. Kabaeva, G.N. Antonova, and V.N. Smirnov. Mechano-chemical control of human endothelium orientation and size. J. Cell Biol. 109:331-339, 1989. doi: 10.1083/jcb.109.1.331 PubMedCrossRefGoogle Scholar
  50. 50.
    Stenson-Cox, C., V. Barron, B. Murphy, P.E. McHugh, and T.S. Smith. Profiling the shear stress of atherosclerosis; a genomic view. Curr. Genomics. 5:287-297, 2004. doi: 10.2174/1389202043349327 CrossRefGoogle Scholar
  51. 51.
    Sung, H.J., A. Yee, S.G. Eskin, and L.V. McIntire. Cyclic strain and motion control produce opposite oxidative responses in two human endothelial cell types. Am J Physiol Cell Physiol. 293:C87-94, 2007. doi: 10.1152/ajpcell.00585.2006 PubMedCrossRefGoogle Scholar
  52. 52.
    Tardy, Y., N. Resnick, T. Nagel, M.A. Jr. Gimbrone, C.F. Jr. Dewey. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102-3106, 1997.PubMedGoogle Scholar
  53. 53.
    Thoumine, O., R.M. Nerem, P.R. Girard. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress. Lab Invest. 73:565-576, 1995.PubMedGoogle Scholar
  54. 54.
    Tsuboi, H., J. Ando, R. Korenaga, Y. Takada and A. Kamiya. Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells. Biochem. Biophys. Res. Commun. 206:988-996, 1995. doi: 10.1006/bbrc.1995.1140 PubMedCrossRefGoogle Scholar
  55. 55.
    Van Belle, E., C. Bauters, T. Asahara, and J.M. Isner. Endothelial regrowth after arterial injury: from vascular repair to therapeutics. Cardiovasc. Res. 38:54-68, 1998. doi: 10.1016/S0008-6363(97)00326-X PubMedCrossRefGoogle Scholar
  56. 56.
    Van Belle, E., F.O. Tio, T. Couffinhal, L. Maillard, J. Passeri, and J.M. Isner. Stent endothelialization: time course, impact of local catheter delivery, feasibility of recombinant protein administration, and response to cytokine expedition. Circulation. 95:438-448, 1997.PubMedGoogle Scholar
  57. 57.
    Vernhet, H., R. Demaria, J.M. Juan, M.C. Oliva-Lauraire, J.P. Senac, and M. Dauzat. Changes in wall mechanics after endovascular stenting in the rabbit aorta: comparison of three stent designs. AJR Am. J. Roentgenol. 176:803-807, 2001.PubMedGoogle Scholar
  58. 58.
    Wexberg, P., N. Jordanova, C. Strehblow, B. Syeda, B. Meyer, S. Charvat, G. Zorn, D. Scheinig, J. Wojta, K. Huber, D. Glogar, and M. Gyongyosi. Time course of prothrombotic and proinflammatory substance release after intracoronary stent implantation. Thromb. Haemost. 99:739-748, 2008.PubMedGoogle Scholar
  59. 59.
    Yazdani, S.K., J.E. Moore Jr., J.L. Berry and P.P. Vlachos. DPIV measurements of flow disturbances in stented artery models: adverse affects of compliance mismatch. J Biomech Eng. 126:559-566, 2004. doi: 10.1115/1.1797904 PubMedCrossRefGoogle Scholar
  60. 60.
    Zhao, S., A. Suciu, T. Ziegler, J.E. Jr. Moore, E. Burki, J.J. Meister, H.R. Brunner, R. Hans. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler. Thromb. Vasc. Biol. 15:1781-1786, 1995.PubMedGoogle Scholar
  61. 61.
    Ziegler, T., K. Bouzourene, V. J. Harrison, H. R. Brunner, and D. Hayoz (1998) Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol 18:686-692PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Marie A. Punchard
    • 1
  • Eoin D. O’Cearbhaill
    • 1
    • 2
  • Joseph N. Mackle
    • 1
    • 3
  • Peter E. McHugh
    • 1
    • 2
  • Terry J. Smith
    • 1
  • Catherine Stenson-Cox
    • 1
  • Valerie Barron
    • 1
    • 3
    Email author
  1. 1.National Centre for Biomedical Engineering, Orbsen BuildingNational University of Ireland, GalwayGalwayIreland
  2. 2.Department of Mechanical and Biomedical EngineeringNational University of Ireland, GalwayGalwayIreland
  3. 3.Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science (NCBES), Orbsen BuildingNational University of Ireland, GalwayGalwayIreland

Personalised recommendations