Annals of Biomedical Engineering

, Volume 37, Issue 6, pp 1082–1092 | Cite as

High Pulsatility Flow Induces Adhesion Molecule and Cytokine mRNA Expression in Distal Pulmonary Artery Endothelial Cells

  • Min Li
  • Devon E. Scott
  • Robin Shandas
  • Kurt R. Stenmark
  • Wei Tan
Article

Abstract

Background: Arterial stiffening or reduced compliance of proximal pulmonary vessels has been shown to be an important predictor of outcomes in patients with pulmonary hypertension. Though current evidence indicates that arterial stiffening modulates flow pulsatility in downstream vessels and is likely related to microvascular damage in organs without extensive distributing arteries, the cellular mechanisms underlying this relationship in the pulmonary circulation are unexplored. Thus, this study was designed to examine the responses of the microvascular pulmonary endothelium to changes in flow pulsatility. Methods: A flow system was developed to reproduce arterial-like pulse flow waves with the capability of modulating flow pulsatility through regulation of upstream compliance. Pulmonary microvascular endothelial cells (PMVECs) were exposed to steady flow and pulse flow waves of varied pulsatility with varied hemodynamic energy (low: pulsatility index or PI = 1.0; medium: PI = 1.7; high: PI = 2.6) at flow frequency of 1 or 2 Hz for different durations (1 and 6 h). The mean flow rates in all the conditions were kept the same with shear stress at 14 dynes/cm2. Gene expression was evaluated by analyzing mRNA levels of adhesion molecules (ICAM-1, E-selectin), chemokine (MCP-1) and growth factor/receptor (VEGF, Flt-1) in PMVECs. Functional changes were observed with monocyte adhesion assay. Results: 1) Compared to either steady flow or low pulsatility flow, increased flow pulsatility for 1 h induced significant increases in mRNA levels of ICAM-1, E-selectin and MCP-1. 2) Sustained high pulsatility flow perfusion induced increases in ICAM, E-selectin, MCP-1, VEGF and its receptor Flt-1 expression. 3) Flow pulsatility effects on PMVECs were frequency-dependent with greater responses at 2 Hz and likely associated with the hemodynamic energy level. 4) Pulse flow waves with high flow pulsatility at 2 Hz induced leukocyte adhesion and recruitment to PMVECs. Conclusion: Increased upstream pulmonary arterial stiffness increases flow pulsatility in distal arteries and induces inflammatory gene expression, leukocyte adhesion and cell proliferation in the downstream PMVECs.

Keywords

Shear stress Pulmonary hypertension Endothelium Inflammation 

Notes

Acknowledgments

This study was funded in part by grants from the Children’s Hospital at Denver (Research Scholar Development Award and CCTSI-K12 Award to W.T.) and the NIH (HL 067397, HL 072738, K24 HL051506 to R.S., HL-14985-36 and HL084923-03 to K.R.S.).

References

  1. 1.
    Asmar R, Safar M, Queneau P. Pulse pressure: an important tool in cardiovascular pharmacology and therapeutics. Drugs. 2003;63:927-32. doi: 10.2165/00003495-200363100-00001 PubMedCrossRefGoogle Scholar
  2. 2.
    Balcells M, Fernandez Suarez M, Vazquez M, Edelman ER. Cells in fluidic environments are sensitive to flow frequency. J Cell Physiol. 2005;204:329-35. doi: 10.1002/jcp.20281 PubMedCrossRefGoogle Scholar
  3. 3.
    Barakat AI, Lieu DK, Gojova A. Secrets of the code: do vascular endothelial cells use ion channels to decipher complex flow signals? Biomaterials. 2006;27:671-8. doi: 10.1016/j.biomaterials.2005.07.036 PubMedCrossRefGoogle Scholar
  4. 4.
    Blackman BR, Garcia-Cardena G, Gimbrone MA, Jr. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J Biomech Eng. 2002;124:397-407. doi: 10.1115/1.1486468 PubMedCrossRefGoogle Scholar
  5. 5.
    Cattan V, Kakou A, Louis H, Lacolley P. Pathophysiology, genetic, and therapy of arterial stiffness. Biomed Mater Eng. 2006;16:S155-61.PubMedGoogle Scholar
  6. 6.
    Chesler NC, Thompson-Figueroa J, Millburne K. Measurements of mouse pulmonary artery biomechanics. J Biomech Eng. 2004;126:309-14. doi: 10.1115/1.1695578 PubMedCrossRefGoogle Scholar
  7. 7.
    Cohn JN. Arterial stiffness, vascular disease, and risk of cardiovascular events. Circulation. 2006;113:601-3. doi: 10.1161/CIRCULATIONAHA.105.600866 PubMedCrossRefGoogle Scholar
  8. 8.
    Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A. 2004;101:14871-6. doi: 10.1073/pnas.0406073101 PubMedCrossRefGoogle Scholar
  9. 9.
    Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, Griem ML, Wernick MN, Jacobs E, Polacek DC, dePaola N, Barakat AI. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu Rev Physiol. 1997;59:527-49. doi: 10.1146/annurev.physiol.59.1.527 PubMedCrossRefGoogle Scholar
  10. 10.
    Davies PF, Spaan JA, Krams R. Shear stress biology of the endothelium. Ann Biomed Eng. 2005;33:1714-8. doi: 10.1007/s10439-005-8774-0 PubMedCrossRefGoogle Scholar
  11. 11.
    Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood. 2002;100:1689-98. doi: 10.1182/blood-2002-01-0046 PubMedCrossRefGoogle Scholar
  12. 12.
    Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol. 2001;281:L529-33.PubMedGoogle Scholar
  13. 13.
    Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res. 2002;90:1189-96. doi: 10.1161/01.RES.0000021432.70309.28 PubMedCrossRefGoogle Scholar
  14. 14.
    Gimbrone MA, Jr., Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N .Y .Acad Sci. 2000;902:230-9; discussion 239-40.PubMedCrossRefGoogle Scholar
  15. 15.
    Go Y-M, Park H, Maland MC, Darley-Usmar VM, Stoyanov B, Wetzker R, Jo H. Phosphatidylinositol 3-kinase mediates shear stress-dependent activation of JNK in endothelial cells. Am J Physiol Heart Circ Physiol. 1998;275:H1898-H1904.Google Scholar
  16. 16.
    Goldsmith D, MacGinley R, Smith A, Covic A. How important and how treatable is vascular stiffness as a cardiovascular risk factor in renal failure? Nephrol Dial Transplant. 2002;17:965-969. doi: 10.1093/ndt/17.6.965 PubMedCrossRefGoogle Scholar
  17. 17.
    Gorgulu S, Eren M, Yildirim A, Ozer O, Uslu N, Celik S, Dagdeviren B, Nurkalem Z, Bagirtan B, Tezel T. A new echocardiographic approach in assessing pulmonary vascular bed in patients with congenital heart disease: pulmonary artery stiffness. Anadolu Kardiyol Derg. 2003;3:92-7.PubMedGoogle Scholar
  18. 18.
    Hastings NE, Simmers MB, McDonald OG, Wamhoff BR, Blackman BR. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am J Physiol Cell Physiol. 2007;293:C1824-33. doi: 10.1152/ajpcell.00385.2007 PubMedCrossRefGoogle Scholar
  19. 19.
    Himburg HA, Dowd SE, Friedman MH. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am J Physiol Heart Circ Physiol. 2006;293:H645-53. doi: 10.1152/ajpheart.01087.2006 PubMedCrossRefGoogle Scholar
  20. 20.
    Himburg HA, Friedman MH. Correspondence of low mean shear and high harmonic content in the porcine iliac arteries. J Biomech Eng. 2007;128:852-6. doi: 10.1115/1.2354211 PubMedCrossRefGoogle Scholar
  21. 21.
    Hunter KS, Gross JK, Lanning CJ, Kirby KS, Dyer KL, Ivy DD, Shandas R. Noninvasive methods for determining pulmonary vascular function in children with pulmonary arterial hypertension: application of a mechanical oscillator model. Congenit Heart Dis. 2008;3:106-16. doi: 10.1111/j.1747-0803.2008.00172.x PubMedCrossRefGoogle Scholar
  22. 22.
    Hunter K, Lee P, Lanning C, Ivy D, Kirby K, Claussen L, Chan K, Shandas R. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. Am Heart J. 2008;155:166-74. doi: 10.1016/j.ahj.2007.08.014 PubMedCrossRefGoogle Scholar
  23. 23.
    Kingwell BA, Ahimastos AA. Arterial stiffness and coronary ischemic disease. Adv Cardiol. 2007;44:125-38. doi: 10.1159/000096725 PubMedCrossRefGoogle Scholar
  24. 24.
    Mattace-Raso F, van der Cammen T, Hofman A, al. e. Arterial Stiffness and Risk of Coronary Heart Disease and Stroke: The Rotterdam Study. Circulation. 2006;113:657-663. doi: 10.1161/CIRCULATIONAHA.105.555235 PubMedCrossRefGoogle Scholar
  25. 25.
    McEniery CM, Wilkinson IB, Avolio AP. Age, hypertension and arterial function. Clin Exp Pharmacol Physiol. 2007;34:665-71. doi: 10.1111/j.1440-1681.2007.04657.x PubMedCrossRefGoogle Scholar
  26. 26.
    McVeigh GE, Hamilton PK, Morgan DR. Evaluation of mechanical arterial properties: clinical, experimental and therapeutic aspects. Clin Sci (Lond). 2002;102:51-67. doi: 10.1042/CS20010191 CrossRefGoogle Scholar
  27. 27.
    Mitchell G, al. e. Cross-Sectional Relations of Peripheral Microvascular Function, Cardiovascular Disease Risk Factors, and Aortic Stiffness: The Framingham Heart Study. Circulation. 2005;112:3722 - 3728. doi: 10.1161/CIRCULATIONAHA.105.551168 PubMedCrossRefGoogle Scholar
  28. 28.
    Mitchell GF, Conlin PR, Dunlap ME, Lacourciere Y, Arnold JM, Ogilvie RI, Neutel J, Izzo JL, Jr., Pfeffer MA. Aortic diameter, wall stiffness, and wave reflection in systolic hypertension. Hypertension. 2008;51:105-11. doi: 10.1161/HYPERTENSIONAHA.107.099721 PubMedCrossRefGoogle Scholar
  29. 29.
    O’Rourke MF. Arterial pressure waveforms in hypertension. Minerva Med. 2003;94:229-50.PubMedGoogle Scholar
  30. 30.
    O’Rourke MF. Brain microbleeds, amyloid plaques, intellectual deterioration, and arterial stiffness. Hypertension. 2008;51:e20; author reply e21. doi: 10.1161/HYPERTENSIONAHA.107.109199 PubMedCrossRefGoogle Scholar
  31. 31.
    Painter PR, Eden P, Bengtsson HU. Pulsatile blood flow, shear force, energy dissipation and Murray’s Law. Theor Biol Med Model. 2006;3:31. doi: 10.1186/1742-4682-3-31 PubMedCrossRefGoogle Scholar
  32. 32.
    Peng X, Haldar S, Deshpande S, Irani K, Kass DA. Wall stiffness suppresses Akt/eNOS and cytoprotection in pulse-perfused endothelium. Hypertension. 2000;41:378-81. doi: 10.1161/01.HYP.0000049624.99844.3D PubMedCrossRefGoogle Scholar
  33. 33.
    Peng X, Recchia FA, Byrne BJ, Wittstein IS, Ziegelstein RC, Kass DA. In vitro system to study realistic pulsatile flow and stretch signaling in cultured vascular cells. Am J Physiol Cell Physiol. 2003;279:C797-805.PubMedGoogle Scholar
  34. 34.
    Safar ME. Peripheral pulse pressure, large arteries, and microvessels. Hypertension. 2004;44:121-2. doi: 10.1161/01.HYP.0000135448.73199.75 PubMedCrossRefGoogle Scholar
  35. 35.
    Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003;107:2864-9. doi: 10.1161/01.CIR.0000069826.36125.B4 PubMedCrossRefGoogle Scholar
  36. 36.
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101-8. doi: 10.1038/nprot.2008.73 PubMedCrossRefGoogle Scholar
  37. 37.
    Scott, D., K. Hunter, M. Li, R. Shandas, and W. Tan. Experimental and computational characterization of flow device for studying cell mechanobiology under pulsatile flow. BMES Proceedings, 2008.Google Scholar
  38. 38.
    Undar A, Zapanta CM, Reibson JD, Souba M, Lukic B, Weiss WJ, Snyder AJ, Kunselman AR, Pierce WS, Rosenberg G, Myers JL. Precise quantification of pressure flow waveforms of a pulsatile ventricular assist device. Asaio J. 2005;51:56-9. doi: 10.1097/01.MAT.0000150326.51377.A0 PubMedCrossRefGoogle Scholar
  39. 39.
    Weiss WJ, Lukic B, Undar A. Energy equivalent pressure and total hemodynamic energy associated with the pressure-flow waveforms of a pediatric pulsatile ventricular assist device. Asaio J. 2005;51:614-7. doi: 10.1097/01.mat.0000179341.95404.f8 PubMedCrossRefGoogle Scholar
  40. 40.
    Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, Ohura N, Matsushita A, Kamiya A, Ando J. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol. 2005;288:H1915-H1924. doi: 10.1152/ajpheart.00956.2004 PubMedCrossRefGoogle Scholar
  41. 41.
    Yee A, Bosworth KA, Conway DE, Eskin SG, McIntire LV. Gene expression of endothelial cells under pulsatile non-reversing vs. steady shear stress; comparison of nitric oxide production. Ann Biomed Eng. 2008;36:571-9. doi: 10.1007/s10439-008-9452-9 PubMedCrossRefGoogle Scholar
  42. 42.
    Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:932-43. doi: 10.1161/01.ATV.0000160548.78317.29 PubMedCrossRefGoogle Scholar
  43. 43.
    Zoungas S, Asmar RP. Arterial stiffness and cardiovascular outcome. Clin Exp Pharmacol Physiol. 2007;34:647-51. doi: 10.1111/j.1440-1681.2007.04654.x PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Min Li
    • 1
  • Devon E. Scott
    • 1
  • Robin Shandas
    • 1
    • 2
    • 3
  • Kurt R. Stenmark
    • 1
  • Wei Tan
    • 1
    • 2
    • 3
  1. 1.Department of Pediatrics–Cardiology, The Children’s HospitalUniversity of Colorado at DenverAuroraUSA
  2. 2.Department of Mechanical EngineeringUniversity of Colorado at BoulderBoulderUSA
  3. 3.Center for BioengineeringUniversity of Colorado at DenverAuroraUSA

Personalised recommendations