Annals of Biomedical Engineering

, Volume 37, Issue 6, pp 1251–1261

Optimal Control of HIV-Virus Dynamics

Article

Abstract

In this paper we consider a mathematical model of HIV-virus dynamics and propose an efficient control strategy to keep the number of HIV virons under a pre-specified level and to reduce the total amount of medications that patients receive. The model considered is a nonlinear third-order model. The third-order model describes dynamics of three most dominant variables: number of healthy white blood cells (T-cells), number of infected T-cells, and number of virus particles. There are two control variables in this model corresponding to two categories of antiviral drugs: reverse transcriptase inhibitors (RTI) and protease inhibitors (PI). The proposed strategy is based on linearization of the nonlinear model at the equilibrium point (steady state). The corresponding controller has two components: the first one that keeps the system state variables at the desired equilibrium (set-point controller) and the second-one that reduces in an optimal way deviations of the system state variables from their desired equilibrium values. The second controller is based on minimization of the square of the error between the actual and desired (equilibrium) values for the linearized system (linear-quadratic optimal controller). The obtained control strategy recommends to HIV researchers and experimentalists that the constant dosages of drugs have to be administrated at all times (set point controller, open-loop controller) and that the variable dosages of drugs have to be administrated on a daily basis (closed-loop controller, feedback controller).

Keywords

Nonlinear control Linearization Optimal control HIV dynamic model 

References

  1. 1.
    Astrom, K., and M. Wittenmark. PID Controllers Theory, Design, and Tuning. Instrument Society of America, 1995.Google Scholar
  2. 2.
    Banks, H., H. Kwon, J. Toivanen, and H. Tran. A state-dependent Riccati equation-based estimator approach for HIV feedback control. Optimal Control Applications and Method, 27, 93-121, 2006.CrossRefGoogle Scholar
  3. 3.
    Brandt, M. and G. Chen. Feedback control of a biodynamical model of HIV-1. IEEE Transactions on Biomedical Engineering, 48:754-759, 2001. doi:10.1109/10.930900.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen, T-C. Linear Systems and Design Oxford University Press, Oxford, United Kingdom, 1999.Google Scholar
  5. 5.
    Craig, I. and X. Xia. Can HIV/AIDS be controlled. IEEE Control Systems Magazine, 25:80-83, 2005. doi:10.1109/MCS.2005.1388805.CrossRefGoogle Scholar
  6. 6.
    Craig, I. X, Xia, and J. Venter. Introducing HIV/AIDS education into the electrical engineering curriculum at the university of Pretoria. IEEE Transactions on Education, 47:65-73, 2004. doi:10.1109/TE.2003.817620.CrossRefGoogle Scholar
  7. 7.
    Culshaw, R. Review of HIV models: The role of the natural immune response and implications for treatment. J. Biol. Syst., 12:123-135, 2004. doi:10.1142/S0218339004001099.CrossRefGoogle Scholar
  8. 8.
    de Souza, F. Modeling the Dynamics of HIV-1 and CD4 and CD8 lymphocytes. Engineering in Medicine and Biology, 18, 21-24, 1999.CrossRefGoogle Scholar
  9. 9.
    Friedland, B. Advanced Control System Design. Prentice Hall, Englewood Cliffs, 1996.Google Scholar
  10. 10.
    Ge, S. Z. Tian, and T. Lee. Nonlinear control of dynamic model of HIV-1. IEEE Transactions on Biomedical Engineering, 52:353-361, 2005. doi:10.1109/TBME.2004.840463.PubMedCrossRefGoogle Scholar
  11. 11.
    Havlir, D. and D. Richman. Viral dynamics of HIV: Implications for drug development and therapeutic strategies. Annals of Internal Medicine, 124:984-994, 1996.PubMedGoogle Scholar
  12. 12.
    Ho, D. D, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard, and M. Markowitz. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373:123-126, 1995. doi:10.1038/373123a0.PubMedCrossRefGoogle Scholar
  13. 13.
    Jeffrey, A. M., X. Xia, and K. Craig. When to initiate HIV therapy: a control theoretic approach. IEEE Transactions on Biomedical Engineering, 50:1213-1220, 2003. doi:10.1109/TBME.2003.818465.PubMedCrossRefGoogle Scholar
  14. 14.
    Khalil, H. Nonlinear Systems. Prentice Hall, Englewood Cliffs, 2002.Google Scholar
  15. 15.
    Ko, J. W. Kim, and C. Chung. Optimized structural interpretation for HIV therapy and its performance analysis on controllability. IEEE Transactions on Biomedical Engineering, 53:380-386, 2006. doi:10.1109/TBME.2005.869651.PubMedCrossRefGoogle Scholar
  16. 16.
    Kremling, A. and J. Saez-Rodriguez. Systems biology—An engineering perspective. Journal of Biotechnology, 129:329-351, 2007. doi:10.1016/j.jbiotec.2007.02.009.PubMedCrossRefGoogle Scholar
  17. 17.
    Nowak, M. and R. May. Virus Dynamics: Mathematical Principles of Immunology and Virology. New York, Oxford Press, 2000.Google Scholar
  18. 18.
    Perelson, A. and P. Nelson. Mathematical analysis of HIV-I dynamics in vivo. SIAM Review, 41:3-44, 1999. doi:10.1137/S0036144598335107.CrossRefGoogle Scholar
  19. 19.
    Perelson, A. S., A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho. HIV-1 dynamics in vivo: Virion clearance rate, infected cell lifespan and viral generation time. Science, 271: 582-1586, 1996. doi:10.1126/science.271.5255.1582.CrossRefGoogle Scholar
  20. 20.
    Sontag, E. D. New directions in control theory inspired by systems biology. Systems Biology, 1:9-18, 2004. doi:10.1049/sb:20045006.CrossRefGoogle Scholar
  21. 21.
    Sontag, E. D. Molecular system biology and control. European Journal of Control, 11:396-435, 2005. doi:10.3166/ejc.11.396-435.CrossRefGoogle Scholar
  22. 22.
    U.S. Department of Health and Human Services. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents. Online http://www.aidsinfo.nih.gov/guidelines, 2003.
  23. 23.
    Xia, X. Estimation of HIV/AIDS parameters. Automatica, 39: 1983-1988, 2003. doi:10.1016/S0005-1098(03)00220-6.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations