Biomechanics: Cell Research and Applications for the Next Decade

  • Dennis Discher
  • Cheng Dong
  • Jeffrey J. FredbergEmail author
  • Farshid Guilak
  • Donald Ingber
  • Paul Janmey
  • Roger D. Kamm
  • Geert W. Schmid-Schönbein
  • Sheldon Weinbaum


With the recent revolution in Molecular Biology and the deciphering of the Human Genome, understanding of the building blocks that comprise living systems has advanced rapidly. We have yet to understand, however, how the physical forces that animate life affect the synthesis, folding, assembly, and function of these molecular building blocks. We are equally uncertain as to how these building blocks interact dynamically to create coupled regulatory networks from which integrative biological behaviors emerge. Here we review recent advances in the field of biomechanics at the cellular and molecular levels, and set forth challenges confronting the field. Living systems work and move as multi-molecular collectives, and in order to understand key aspects of health and disease we must first be able to explain how physical forces and mechanical structures contribute to the active material properties of living cells and tissues, as well as how these forces impact information processing and cellular decision making. Such insights will no doubt inform basic biology and rational engineering of effective new approaches to clinical therapy.


Biomechanics Cell Mechanics Rheology Signaling Force Stress 


  1. 1.
    An, S. S., C. M. Pennella, A. Gonnabathula, J. Chen, N. Wang, M. Gaestel, P. M. Hassoun, J. J. Fredberg, and U. S. Kayyali. Hypoxia alters biophysical properties of endothelial cells via p38 MAPK- and Rho kinase-dependent pathways. Am J Physiol Cell Physiol, 289(3):C521-530, 2005.PubMedGoogle Scholar
  2. 2.
    Bausch, A. R. and K. Kroy (2006). A bottom-up approach to cell mechanics. Nat. Phys. 2:231–238Google Scholar
  3. 3.
    Ben-Ze’ev, A., G. S. Robinson, N. L. Bucher, S. R. Farmer. Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc Natl Acad Sci U S A, 85(7):2161-2165, 1988.PubMedGoogle Scholar
  4. 4.
    A. Bershadsky, M. Kozlov, B. Geiger. Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol, 18(5):472-481, 2006.PubMedGoogle Scholar
  5. 5.
    A. D. Bershadsky, N. Q. Balaban, B. Geiger. Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol, 19:677-695, 2003.PubMedGoogle Scholar
  6. 6.
    J. S. Blatnik, G. W. Schmid-Schonbein, and L. A. Sung. The influence of fluid shear stress on the remodeling of the embryonic primary capillary plexus. Biomech Model Mechanobiol, 4(4):211-220, 2005.PubMedGoogle Scholar
  7. 7.
    J. Brujic, R. Hermans, K. Walther, J. M. Fernandez. Single-molecule force spectroscopy reveals signatures of glassy dynamics of the energy landscape of ubiquitin. Nature Physics, 2:282-286, 2006.Google Scholar
  8. 8.
    Brujic, J., R. I. Hermans, S. Garcia-Manyes, K. A. Walther, J. M. Fernandez. 2007. Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy. Biophys J, 92(8):2896-2903.PubMedGoogle Scholar
  9. 9.
    Bursac, P., G. Lenormand, B. Fabry, M. Oliver, D. A. Weitz, V. Viasnoff, J. P. Butler, J. J. Fredberg. 2005. Cytoskeletal remodelling and slow dynamics in the living cell. Nat Mater, 4:557-571.PubMedGoogle Scholar
  10. 10.
    Butler, D. L., S. A. Goldstein, F. Guilak. 2000. Functional tissue engineering: the role of biomechanics. J Biomech Eng, 122(6):570-575.PubMedGoogle Scholar
  11. 11.
    Cao, J., B. Donell, D. R. Deaver, M. B. Lawrence, C. Dong. 1998. In vitro side-view imaging technique and analysis of human T-leukemic cell adhesion to ICAM-1 in shear flow. Microvasc Res, 55(2):124-137.PubMedGoogle Scholar
  12. 12.
    Chan, C. E., D. J. Odde. 2008. Traction dynamics of filopodia on compliant substrates. Science, 322(5908):1687-1691.PubMedGoogle Scholar
  13. 13.
    Chaudhuri, O., S. H. Parekh, D. A. Fletcher. 2007. Reversible stress softening of actin networks. Nature, 445(7125):295-298.PubMedGoogle Scholar
  14. 14.
    Chen, A. K., M. I. Latz, P. Sobolewski, J. A. Frangos. 2007. Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence. Am J Physiol Regul Integr Comp Physiol, 292(5):R2020-2027.PubMedGoogle Scholar
  15. 15.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, D. E. Ingber. 1997. Geometric control of cell life and death. Science, 276(5317):1425-1428.PubMedGoogle Scholar
  16. 16.
    Choy, J. L., S. H. Parekh, O. Chaudhuri, A. P. Liu, C. Bustamante, M. J. Footer, J. A. Theriot, D. A. Fletcher (2007). Differential force microscope for long time-scale biophysical measurements. Rev. Sci. Instrum. 78(4):043711.PubMedGoogle Scholar
  17. 17.
    Cusick, M. E., N. Klitgord, M. Vidal, D. E. Hill (2005). Interactome: gateway into systems biology. Hum Mol Genet 14(2):R171–R181.PubMedGoogle Scholar
  18. 18.
    De, R., A. Zemel, S. Safran. 2007. Dynamics of cell orientation. Nature Physics, 3:655-659.Google Scholar
  19. 19.
    Dean, D. M., J. R. Morgan. 2008. Cytoskeletal-mediated tension modulates the directed self-assembly of microtissues. Tissue engineering, 14(12):1989-1997.Google Scholar
  20. 20.
    Dembo, M. and Y. L. Wang. 1999. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J, 76(4):2307-2316.PubMedGoogle Scholar
  21. 21.
    Deng, L., X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, J. J. Fredberg (2006). Fast and slow dynamics of the cytoskeleton. Nat Mater 5:636–640.PubMedGoogle Scholar
  22. 22.
    Dobson, C. M. 2004. Chemical space and biology. Nature, 432(7019):824-828.PubMedGoogle Scholar
  23. 23.
    Dong, C., J. Cao, E. J. Struble, H. H. Lipowsky. 1999. Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann Biomed Eng, 27(3):298-312.PubMedGoogle Scholar
  24. 24.
    Dong, C., X. X. Lei. 2000. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. J Biomech, 33(1):35-43.PubMedGoogle Scholar
  25. 25.
    Dong, C., R. Skalak, K. L. Sung, G. W. Schmid-Schonbein, S. Chien. 1988. Passive deformation analysis of human leukocytes. J Biomech Eng, 110(1):27-36.PubMedCrossRefGoogle Scholar
  26. 26.
    Dowell, M. L., O. J. Lakser, W. T. Gerthoffer, J. J. Fredberg, G. L. Stelmack, A. J. Halayko, J. Solway, R. W. Mitchell. 2005. Latrunculin B increases force fluctuation-induced relengthening of ACh-contracted, isotonically shortened canine tracheal smooth muscle. J Appl Physiol, 98(2):489-497.PubMedGoogle Scholar
  27. 27.
    Du, Z., Y. Duan, Q. Yan, A. M. Weinstein, S. Weinbaum, T. Wang. 2004. Mechanosensory function of microvilli of the kidney proximal tubule. Proc Natl Acad Sci U S A, 101(35):13068-13073.PubMedGoogle Scholar
  28. 28.
    Einstein, A. 1905. Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Ann. Physik, 19:371-381.Google Scholar
  29. 29.
    Ellis, R. J. 2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci, 26(10):597-604.PubMedGoogle Scholar
  30. 30.
    Engler, A. J., S. Sen, H. L. Sweeney, D. E. Discher. 2006. Matrix elasticity directs stem cell lineage specification. Cell, 126(4):677-689.PubMedGoogle Scholar
  31. 31.
    Evans, E., A. Yeung. 1989. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J, 56(1):151-160.PubMedGoogle Scholar
  32. 32.
    Fabry, B., G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg (2001). Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102.PubMedGoogle Scholar
  33. 33.
    Fabry, B., G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, N. A. Taback, E. J. Millet, and J. J. Fredberg. Time scale and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4 Pt 1):041914, 2003.Google Scholar
  34. 34.
    Florian, J. A., J. R. Kosky, K. Ainslie, Z. Pang, R. O. Dull, J. M. Tarbell. 2003. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res, 93(10):e136-142.PubMedGoogle Scholar
  35. 35.
    Folkman, J., A. Moscona (1978). Role of cell shape in growth control. Nature 273(5661):345–349PubMedGoogle Scholar
  36. 36.
    Foty, R. A. and M. S. Steinberg. 2005. The differential adhesion hypothesis: a direct evaluation. Dev Biol, 278(1):255-263.PubMedGoogle Scholar
  37. 37.
    Frauenfelder, H., S. G. Sligar, and P. G. Wolynes. 1991. The energy landscapes and motions of proteins. Science, 254(5038):1598-1603.PubMedGoogle Scholar
  38. 38.
    Fredberg, J. J. 2000. Frozen objects: small airways, big breaths, and asthma. J Allergy Clin Immunol, 106(4):615-624.PubMedGoogle Scholar
  39. 39.
    Fung, Y. 1984. Biodynamics: Circulation. New York:Springer-Verlag.Google Scholar
  40. 40.
    Garcia, H. G., P. Grayson, L. Han, M. Inamdar, J. Kondev, P. C. Nelson, R. Phillips, J. Widom, P. A. Wiggins. 2007. Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers, 85(2):115-130.PubMedGoogle Scholar
  41. 41.
    Gardel, M. L., F. Nakamura, J. H. Hartwig, J. C. Crocker, T. P. Stossel, D. A. Weitz. 2006. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci U S A, 103(6):1762-1767.PubMedGoogle Scholar
  42. 42.
    Geiger, B., J. Spatz, A. Bershadsky. 2009. Environmental sensing through focal adhesions. Nature Reviews: Molecular Cell Biology, 10:21-33.PubMedGoogle Scholar
  43. 43.
    Goodsell, D. (2000). Biomolecules and nanotechnology. Am Sci 88:230–237Google Scholar
  44. 44.
    Gov, N. S. Active elastic network: cytoskeleton of the red blood cell. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1 Pt 1):011921, 2007.Google Scholar
  45. 45.
    Gov, N. S., S. A. Safran. 2005. Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys J, 88(3):1859-1874.PubMedGoogle Scholar
  46. 46.
    Griffin, T. M., F. Guilak. 2005. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev, 33(4):195-200.PubMedGoogle Scholar
  47. 47.
    Guo, P., A. M. Weinstein, S. Weinbaum. 2000. A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am J Physiol Renal Physiol, 279(4):F698-712.PubMedGoogle Scholar
  48. 48.
    Han, Y., S. C. Cowin, M. B. Schaffler, S. Weinbaum. 2004. Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci U S A, 101(47):16689-16694.PubMedGoogle Scholar
  49. 49.
    Harris, A. K., P. Wild, D. Stopak. 1980. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science, 208(4440):177-179 .PubMedGoogle Scholar
  50. 50.
    Haw, M. 2007. From steam engines to life. American Scientist, 95:472-473.Google Scholar
  51. 51.
    Henzler-Wildman, K., D. Kern. 2007. Dynamic personalities of proteins. Nature, 450(7172):964-972.PubMedGoogle Scholar
  52. 52.
    Herrera, A. M., E. C. Martinez, C. Y. Seow. 2004. Electron microscopic study of actin polymerization in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol, 286(6):L1161-1168.PubMedGoogle Scholar
  53. 53.
    Holt, J. R. and D. P. Corey. 2000. Two mechanisms for transducer adaptation in vertebrate hair cells. Proc Natl Acad Sci U S A, 97(22):11730-11735.PubMedGoogle Scholar
  54. 54.
    Hove, J. R., R. W. Koster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, M. Gharib. 2003. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature, 421(6919):172-177.PubMedGoogle Scholar
  55. 55.
    Huang, S., D. E. Ingber. 1999. The structural and mechanical complexity of cell-growth control. Nat Cell Biol, 1(5):E131-138.PubMedGoogle Scholar
  56. 56.
    Ingber, D. E. 2003. Mechanobiology and diseases of mechanotransduction. Ann Med, 35(8):564-577.PubMedGoogle Scholar
  57. 57.
    Ingber, D. E. 2006. Cellular mechanotransduction: putting all the pieces together again. Faseb J, 20(7):811-827.PubMedGoogle Scholar
  58. 58.
    Ingber, D. E. 2006. Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol, 50(2-3):255-266.PubMedGoogle Scholar
  59. 59.
    Jaramillo, F., A. J. Hudspeth. 1993. Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle. Proc Natl Acad Sci U S A, 90(4):1330-1334.PubMedGoogle Scholar
  60. 60.
    Jia, D., D. Dajusta, and R. A. Foty. 2007. Tissue surface tensions guide in vitro self-assembly of rodent pancreatic islet cells. Dev Dyn, 236(8):2039-2049.PubMedGoogle Scholar
  61. 61.
    Kroy, K., J. Glaser 2007. The Glassy Wormlike Chain. New Journal of Physics, 9:416.Google Scholar
  62. 62.
    Lazaar, A. L., R. A. Panettieri, Jr. 2003. Is airway remodeling clinically relevant in asthma? Am J Med, 115(8):652-659.PubMedGoogle Scholar
  63. 63.
    Lei, X., M. B. Lawrence, C. Dong. 1999. Influence of cell deformation on leukocyte rolling adhesion in shear flow. J Biomech Eng, 121(6):636-643.PubMedGoogle Scholar
  64. 64.
    Leyton-Mange, J., S. Yang, M. H. Hoskins, R. F. Kunz, J. D. Zahn, C. Dong. 2006. Design of a side-view particle imaging velocimetry flow system for cell-substrate adhesion studies. J Biomech Eng, 128(2):271-278.PubMedGoogle Scholar
  65. 65.
    Li, J., G. Lykotrafitis, M. Dao, S. Suresh. 2007. Cytoskeletal dynamics of human erythrocyte. Proc Natl Acad Sci U S A, 104(12):4937-4942.PubMedGoogle Scholar
  66. 66.
    Liang, S., A. Sharma, H. H. Peng, G. Robertson, C. Dong. 2007. Targeting mutant (V600E) B-Raf in melanoma interrupts immunoediting of leukocyte functions and melanoma extravasation. Cancer Res, 67(12):5814-5820.PubMedGoogle Scholar
  67. 67.
    Liang, S., M. J. Slattery, C. Dong. 2005. Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Exp Cell Res, 310(2):282-292.PubMedGoogle Scholar
  68. 68.
    Liu, W., N. S. Murcia, Y. Duan, S. Weinbaum, B. K. Yoder, E. Schwiebert, L. M. Satlin. 2005. Mechanoregulation of intracellular Ca2 + concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol, 289(5):F978-988.PubMedGoogle Scholar
  69. 69.
    Liu, W., S. Xu, C. Woda, P. Kim, S. Weinbaum, L. M. Satlin. 2003. Effect of flow and stretch on the [Ca2 +]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol, 285(5):F998-F1012.PubMedGoogle Scholar
  70. 70.
    Luby-Phelps, K. 2000. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol, 192:189-221.PubMedGoogle Scholar
  71. 71.
    Macklem, P. T. Viewpoint: emergent phenomena and the secrets of life. J. Appl. Physiol. 104(6):1844–1846, 2008.PubMedGoogle Scholar
  72. 72.
    Makino, A., H. Shin, Y. Komai, S. Fukuda, M. F. Coughlin, M. Sugihara-Seki, G. Schmid-Schonbein. 2007. Mechaotransduction in leukocyte activation. Biorheology, 44:221-249.PubMedGoogle Scholar
  73. 73.
    Marinkovic, M., M. Diez-Silva, I. Pantic, J. J. Fredberg, S. Suresh, J. P. Butler. 2009. Febrile temperature leads to significant stiffening of Plasmodium falciparum parasitized erythrocytes. Am J Physiol Cell Physiol, 296(1):C59-64.PubMedGoogle Scholar
  74. 74.
    Matthews, B. D., D. R. Overby, R. Mannix, and D. E. Ingber. 2006. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci, 119(Pt 3):508-518.PubMedGoogle Scholar
  75. 75.
    McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, C. S. Chen. 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 6(4):483-495.PubMedGoogle Scholar
  76. 76.
    McCulloch, A. D., J. H. Omens. 1991. Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium. J Biomech, 24(7):539-548.PubMedGoogle Scholar
  77. 77.
    Mead, J., I. Lindgren, and E. A. Gaensler. The mechanical properties of the lungs in emphysema. J. Clin. Invest. 34(7, Part 1):1005–1016, 1955.Google Scholar
  78. 78.
    Michel, C. C. 1997. Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol, 82(1):1-30.PubMedGoogle Scholar
  79. 79.
    Minton, A. 2006. How can biochemical reactions within cells differ from those in test tubes? Journal of Cell Science, 119:2863-2869.PubMedGoogle Scholar
  80. 80.
    Mizuno, D., C. Tardin, C. F. Schmidt, F. C. Mackintosh. 2007. Nonequilibrium mechanics of active cytoskeletal networks. Science, 315(5810):370-373.PubMedGoogle Scholar
  81. 81.
    Moore, K. A., T. Polte, S. Huang, B. Shi, E. Alsberg, M. E. Sunday, D. E. Ingber. 2005. Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn, 232(2):268-281.PubMedGoogle Scholar
  82. 82.
    Murray, C. 1926. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences USA, 12:207-214.PubMedGoogle Scholar
  83. 83.
    Na, S., O. Collin, F. Chowdhury, B. Tay, M. Ouyang, Y. Wang, and N. Wang. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl. Acad. Sci. USA, 105(18):6626–6631, 2008.PubMedGoogle Scholar
  84. 84.
    Na, S., and N. Wang. Application of fluorescence resonance energy transfer and magnetic twisting cytometry to quantify mechanochemical signaling activities in a living cell. Sci. Signal. 1(34):p11, 2008.PubMedGoogle Scholar
  85. 85.
    Ober, C., S. Hoffjan. 2006. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun, 7(2):95-100.PubMedGoogle Scholar
  86. 86.
    Oliver, M. N., B. Fabry, A. Marinkovic, S. M. Mijailovich, J. P. Butler, J. J. Fredberg. 2007. Airway hyperresponsiveness, remodeling, and smooth muscle mass: right answer, wrong reason? Am J Respir Cell Mol Biol, 37(3):264-272.PubMedGoogle Scholar
  87. 87.
    Pajerowski, J., K. Dahl, F. Zhong, P. Sammak, D. Discher. 2007. Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci U S A, 104:15619-15624.PubMedGoogle Scholar
  88. 88.
    Parker, K. K., A. L. Brock, C. Brangwynne, R. J. Mannix, N. Wang, E. Ostuni, N. A. Geisse, J. C. Adams, G. M. Whitesides, and D. E. Ingber. 2002. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. Faseb J, 16(10):1195-1204.PubMedGoogle Scholar
  89. 89.
    Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, V. M. Weaver. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3):241-254.PubMedGoogle Scholar
  90. 90.
    Peng, H. H., S. Liang, A. J. Henderson, C. Dong. 2007. Regulation of interleukin-8 expression in melanoma-stimulated neutrophil inflammatory response. Exp Cell Res, 313(3):551-559.PubMedGoogle Scholar
  91. 91.
    Piekarski, K., M. Munro. 1977. Transport mechanism operating between blood supply and osteocytes in long bones. Nature, 269(5623):80-82.PubMedGoogle Scholar
  92. 92.
    Pollard, T. D. 2003. The cytoskeleton, cellular motility and the reductionist agenda. Nature, 422(6933):741-745.PubMedGoogle Scholar
  93. 93.
    Praetorius, H. A., K. R. Spring. 2001. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol, 184(1):71-79.PubMedGoogle Scholar
  94. 94.
    Puig-de-Morales-Marinkovic, M., K. T. Turner, J. P. Butler, J. J. Fredberg, S. Suresh. 2007. Viscoelasticity of the human red blood cell. Am J Physiol Cell Physiol, 293(2):C597-605.PubMedGoogle Scholar
  95. 95.
    Raupach, C., D. P. Zitterbart, C. T. Mierke, C. Metzner, F. A. Muller, and B. Fabry. Stress fluctuations and motion of cytoskeletal-bound markers. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1 Pt 1):011918, 2007.Google Scholar
  96. 96.
    Reich, K. M. and J. A. Frangos. Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. Am. J. Physiol. 261(3 Pt 1):C428–C432, 1991.Google Scholar
  97. 97.
    Rubin, C. T., L. E. Lanyon. 1984. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am, 66(3):397-402.PubMedGoogle Scholar
  98. 98.
    Sato, A., T. Hirai, A. Imura, N. Kita, A. Iwano, S. Muro, Y. Nabeshima, B. Suki, M. Mishima. 2007. Morphological mechanism of the development of pulmonary emphysema in klotho mice. Proc Natl Acad Sci U S A, 104(7):2361-2365.PubMedGoogle Scholar
  99. 99.
    Sawada, Y. and M. P. Sheetz. 2002. Force transduction by Triton cytoskeletons. J Cell Biol, 156(4):609-615.PubMedGoogle Scholar
  100. 100.
    Saxena, V., C. W. Hwang, S. Huang, Q. Eichbaum, D. Ingber, and D. P. Orgill. Vacuum-assisted closure: microdeformations of wounds and cell proliferation. Plast. Reconstr. Surg. 114(5):1086–1096; discussion 1097–1088, 2004.Google Scholar
  101. 101.
    Schmid-Schonbein, G. W. 1999. Biomechanics of microcirculatory blood perfusion. Annu Rev Biomed Eng, 1:73-102.PubMedGoogle Scholar
  102. 102.
    Schnermann, J., M. Wahl, G. Liebau, H. Fischbach. 1968. Balance between tubular flow rate and net fluid reabsorption in the proximal convolution of the rat kidney. I. Dependency of reabsorptive net fluid flux upon proximal tubular surface area at spontaneous variations of filtration rate. Pflugers Arch, 304(1):90-103.PubMedGoogle Scholar
  103. 103.
    Secomb, T. W., R. Hsu, A. R. Pries. 2001. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology, 38(2-3):143-150.PubMedGoogle Scholar
  104. 104.
    Semmrich, C., T. Storz, J. Glaser, R. Merkel, A. R. Bausch, K. Kroy. 2007. Glass transition and rheological redundancy in F-actin solutions. Proc Natl Acad Sci U S A, 104(51):20199-20203.PubMedGoogle Scholar
  105. 105.
    Seow, C. Y. 2005. Myosin filament assembly in an ever-changing myofilament lattice of smooth muscle. Am J Physiol Cell Physiol, 289(6):C1363-1368.PubMedGoogle Scholar
  106. 106.
    Shaevitz, J. W., D. A. Fletcher. 2007. Load fluctuations drive actin network growth. Proc Natl Acad Sci U S A, 104(40):15688-15692.PubMedGoogle Scholar
  107. 107.
    Shen, T. and P. Wolynes. Statistical mechanics of a cat’s cradle. New J. Phys. 8:273, 2006.Google Scholar
  108. 108.
    Shen, T. and P. G. Wolynes. Nonequilibrium statistical mechanical models for cytoskeletal assembly: towards understanding tensegrity in cells. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4 Pt 1):041927, 2005.Google Scholar
  109. 109.
    Shi, Q., Y. H. Chien, D. Leckband. 2008. Biophysical properties of cadherin bonds do not predict cell sorting. J Biol Chem, 283(42):28454-28463.PubMedGoogle Scholar
  110. 110.
    Simon, S. I., G. W. Schmid-Schonbein. 1990. Cytoplasmic strains and strain rates in motile polymorphonuclear leukocytes. Biophys J, 58(2):319-332.PubMedGoogle Scholar
  111. 111.
    Singhvi, R., A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. Wang, G. M. Whitesides, and D. E. Ingber. 1994. Engineering cell shape and function. Science, 264(5159):696-698.PubMedGoogle Scholar
  112. 112.
    Skalak, R., C. Dong, C. Zhu. 1990. Passive deformations and active motions of leukocytes. J Biomech Eng, 112(3):295-302.PubMedGoogle Scholar
  113. 113.
    Skalak, R., N. Ozkaya, T. Skalak. 1989. Biofluid Mecahnics. Annual Review of Fluuid Mechanics 21:167-204.Google Scholar
  114. 114.
    Slattery, M. J., S. Liang, C. Dong. 2005. Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Physiol Cell Physiol, 288(4):C831-839.PubMedGoogle Scholar
  115. 115.
    Smith, N. P., G. Kassab. 2001. Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models. Phil. Trans. R. Soc. Lond., A 359:251-1263.Google Scholar
  116. 116.
    Suki, B., K. R. Lutchen, E. P. Ingenito. 2003. On the progressive nature of emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med, 168(5):516-521.PubMedGoogle Scholar
  117. 117.
    Sultan, C., D. Stamenovic, D. E. Ingber. 2004. A computational tensegrity model predicts dynamic rheological behaviors in living cells. Ann Biomed Eng, 32(4):520-530PubMedGoogle Scholar
  118. 118.
    Thi, M. M., J. M. Tarbell, S. Weinbaum, D. C. Spray. 2004. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci U S A, 101(47):16483-16488.PubMedGoogle Scholar
  119. 119.
    Trepat, X., L. Deng, S. An, D. Navajas, D. Tschumperlin, W. Gerthoffer, J. Butler, and J. Fredberg. 2007. Universal physical responses to stretch in the living cell. Nature, 447:592-595.PubMedGoogle Scholar
  120. 120.
    Van Gieson, E. J., W. L. Murfee, T. C. Skalak, R. J. Price (2003). Enhanced smooth muscle cell coverage of microvessels exposed to increased hemodynamic stresses in vivo. Circ Res 92(8):929–936.PubMedGoogle Scholar
  121. 121.
    Vera, C., R. Skelton, F. Bossens, L. A. Sung. 2005. 3-D nanomechanics of an erythrocyte junctional complex in equibiaxial and anisotropic deformations. Ann Biomed Eng, 33(10):1387-1404.PubMedGoogle Scholar
  122. 122.
    Vink, H. and B. R. Duling. 1996. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res, 79(3):581-589.PubMedGoogle Scholar
  123. 123.
    Wang, N., J. P. Butler, D. E. Ingber. 1993. Mechanotransduction across the cell surface and through the cytoskeleton. Science, 260(5111):1124-1127.PubMedGoogle Scholar
  124. 124.
    Wang, Y., L. M. McNamara, M. B. Schaffler, and S. Weinbaum. 2007. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci U S A, 104(40):15941-15946.PubMedGoogle Scholar
  125. 125.
    Wayne Brodland, G., H. H. Chen. 2000. The mechanics of cell sorting and envelopment. J Biomech, 33(7):845-851.PubMedGoogle Scholar
  126. 126.
    Weinbaum, S. (1998) Whitaker distinguished lecture: models to solve mysteries in biomechanics at the cellular level; a new view of fiber matrix layers. Ann. Biomed. Eng. 26(4):627–643.PubMedGoogle Scholar
  127. 127.
    Weinbaum, S., S. C. Cowin, Y. Zeng. 1994. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech, 27(3):339-360.PubMedGoogle Scholar
  128. 128.
    Weinbaum, S., J. M. Tarbell, E. R. Damiano. 2007. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng, 9:121-167.PubMedGoogle Scholar
  129. 129.
    Weinbaum, S., X. Zhang, Y. Han, H. Vink, and S. C. Cowin. 2003. Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A, 100(13):7988-7995.PubMedGoogle Scholar
  130. 130.
    Wolff, J. (1891). Das gesetz der transformation der knochen. Berlin: A HirschwaldGoogle Scholar
  131. 131.
    Wood, L. D., D. W. Parsons, S. Jones, J. Lin, T. Sjoblom, R. J. Leary, D. Shen, S. M. Boca, T. Barber, J. Ptak, N. Silliman, S. Szabo, Z. Dezso, V. Ustyanksky, T. Nikolskaya, Y. Nikolsky, R. Karchin, P. A. Wilson, J. S. Kaminker, Z. Zhang, R. Croshaw, J. Willis, D. Dawson, M. Shipitsin, J. K. Willson, S. Sukumar, K. Polyak, B. H. Park, C. L. Pethiyagoda, P. V. Pant, D. G. Ballinger, A. B. Sparks, J. Hartigan, D. R. Smith, E. Suh, N. Papadopoulos, P. Buckhaults, S. D. Markowitz, G. Parmigiani, K. W. Kinzler, V. E. Velculescu, B. Vogelstein. 2007. The genomic landscapes of human breast and colorectal cancers. Science, 318(5853):1108-1113.PubMedGoogle Scholar
  132. 132.
    Yao, Y., A. Rabodzey, C. Forbes Dewey, Jr. 2007. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol, 293(2):H1023-1030.PubMedGoogle Scholar
  133. 133.
    You, L., S. C. Cowin, M. B. Schaffler, and S. Weinbaum. 2001. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech, 34(11):1375-1386PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Dennis Discher
    • 1
  • Cheng Dong
    • 2
  • Jeffrey J. Fredberg
    • 3
    Email author
  • Farshid Guilak
    • 4
  • Donald Ingber
    • 5
  • Paul Janmey
    • 1
  • Roger D. Kamm
    • 6
  • Geert W. Schmid-Schönbein
    • 7
  • Sheldon Weinbaum
    • 8
  1. 1.University of PennsylvaniaPhiladelphiaUSA
  2. 2.Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Harvard School of Public HealthBostonUSA
  4. 4.Duke UniversityDurhamUSA
  5. 5.Harvard Medical SchoolBostonUSA
  6. 6.MITBostonUSA
  7. 7.University of California, San DiegoSan DiegoUSA
  8. 8.City College of New YorkNew YorkUSA

Personalised recommendations