Advertisement

High-resolution Mapping of In Vivo Gastrointestinal Slow Wave Activity Using Flexible Printed Circuit Board Electrodes: Methodology and Validation

  • Peng DuEmail author
  • G. O’Grady
  • J. U. Egbuji
  • W. J. Lammers
  • D. Budgett
  • P. Nielsen
  • J. A. Windsor
  • A. J. Pullan
  • L. K. Cheng
Article

Abstract

High-resolution, multi-electrode mapping is providing valuable new insights into the origin, propagation, and abnormalities of gastrointestinal (GI) slow wave activity. Construction of high-resolution mapping arrays has previously been a costly and time-consuming endeavor, and existing arrays are not well suited for human research as they cannot be reliably and repeatedly sterilized. The design and fabrication of a new flexible printed circuit board (PCB) multi-electrode array that is suitable for GI mapping is presented, together with its in vivo validation in a porcine model. A modified methodology for characterizing slow waves and forming spatiotemporal activation maps showing slow waves propagation is also demonstrated. The validation study found that flexible PCB electrode arrays are able to reliably record gastric slow wave activity with signal quality near that achieved by traditional epoxy resin-embedded silver electrode arrays. Flexible PCB electrode arrays provide a clinically viable alternative to previously published devices for the high-resolution mapping of GI slow wave activity. PCBs may be mass-produced at low cost, and are easily sterilized and potentially disposable, making them ideally suited to intra-operative human use.

Keywords

PCB Gastric electrical activity Smooth muscle Activation map Velocity 

Notes

Acknowledgment

This work is partially supported by Grants from the NIH (R01 DK64775), NZ Society of Gastroenterology, the NZ Health Research Council and the Auckland Medical Research Foundation. We thank Linley Nisbett for her assistance with the validation studies in this report.

References

  1. 1.
  2. 2.
  3. 3.
    Behm B and Stollman N. Postoperative ileus: etiologies and interventions. Clin Gastroenterol Hepatol 1: 71–80, 2003. doi: 10.1053/cgh.2003.50012 PubMedCrossRefGoogle Scholar
  4. 4.
    Bradshaw LA, Irimia A, Sims JA, Gallucci MR, Palmer PL, and Richards WO. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Neurogastroenterology & Motility 18: 619–631, 2006. doi: 10.1111/j.1365-2982.2006.00794.x PubMedCrossRefGoogle Scholar
  5. 5.
    Buist ML, Cheng LK, Yassi R, Bradshaw LA, Richards WO, and Pullan AJ. An anatomical model of the gastric system for producing bioelectric and biomagnetic fields. Physiol Meas 25: 849–861, 2004. doi: 10.1088/0967-3334/25/4/006 PubMedCrossRefGoogle Scholar
  6. 6.
    Chen CL, Lin HH, Huang LC, Huang SC, and Liu TT. Electrogastrography differentiates reflux disease with or without dyspeptic symptoms. Dig Dis Sci 49: 715–719, 2004. doi: 10.1023/B:DDAS.0000030079.20501.62 PubMedCrossRefGoogle Scholar
  7. 7.
    Chen JD, Lin Z, Pan J, and McCallum RW. Abnormal gastric myoelectrical activity and delayed gastric emptying in patients with symptoms suggestive of gastroparesis. Dig Dis Sci 41: 1538–1545, 1996. doi: 10.1007/BF02087897 PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng LK, Buist ML, and Pullan AJ. Anatomically realistic torso model for studying the relative decay of gastric electrical and magnetic fields. Conf Proc IEEE Eng Med Biol Soc 1: 3158–3161, 2006.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheng, L. K., G. O’Grady, P. Du, J. U. Egbuji, J. A. Windsor, and A. J. Pullan. Gastrointestinal system. Wiley Interdiscip. Rev.: Syst. Biol. Med., 2009, in press. doi: 10.1002/wnan.019.
  10. 10.
    Chou CC, Zhou S, Tan AY, Hayashi H, Nihei M, and Chen PS. High-density mapping of pulmonary veins and left atrium during ibutilide administration in a canine model ofsustained atrial fibrillation. Am J Physiol Heart Circ Physiol 289: H2704–2713, 2005. doi: 10.1152/ajpheart.00537.2005 PubMedCrossRefGoogle Scholar
  11. 11.
    Christensen J, Schedl HP, and Clifton JA. The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with variety of diseases. Gastroenterology 50: 309–315, 1966.PubMedGoogle Scholar
  12. 12.
    Code CF and Szurszewski JH. The effect of duodenal and mid small bowel transection on the frequency gradient of the pacesetter potential in the canine small intestine. J Physiol 207: 281–289, 1970.PubMedGoogle Scholar
  13. 13.
    Cucchiara S, Franzese A, Salvia G, Alfonsi L, Iula VD, Montisci A, and Moreira FL. Gastric emptying delay and gastric electrical derangement in IDDM. Diabetes Care 21: 438–443, 1998. doi: 10.2337/diacare.21.3.438 PubMedCrossRefGoogle Scholar
  14. 14.
    Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterology & Motility 20: 54–63, 2008. doi: 10.1111/j.1365-2982.2008.01109.x PubMedCrossRefGoogle Scholar
  15. 15.
    Hinder RA and Kelly KA. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg 133: 29–33, 1977. doi: 10.1016/0002-9610(77)90187-8 PubMedCrossRefGoogle Scholar
  16. 16.
    Hocking MP, Vogel SB, and Sninsky CA. Human gastric myoelectric activity and gastric emptying following gastric surgery and with pacing. Gastroenterology 103: 1811–1816, 1992.PubMedGoogle Scholar
  17. 17.
    Jalife J. Rotors and spiral waves in atrial fibrillation. J Cardiovasc Electrophysiol 14: 776–780, 2003.PubMedGoogle Scholar
  18. 18.
    Komuro R, Cheng LK, and Pullan AJ. Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity. Ann Biomed Eng 36: 1049–1059, 2008. doi: 10.1007/s10439-008-9480-5 PubMedCrossRefGoogle Scholar
  19. 19.
    Konings KT, Kirchhof CJ, Smeets JR, Wellens HJ, Penn OC, and Allessie MA. High-density mapping of electrically induced atrial fibrillation in humans. Circulation 89: 1665–1680, 1994.PubMedGoogle Scholar
  20. 20.
    Lammers WJ and Stephen B. Origin and propagation of individual slow waves along the intact feline small intestine. Exp Physiol 93: 334–346, 2008. doi: 10.1113/expphysiol.2007.039180 PubMedCrossRefGoogle Scholar
  21. 21.
    Lammers WJ, Stephen B, Arafat K, and Manefield GW. High resolution electrical mapping in the gastrointestinal system: initial results. Neurogastroenterol Motil 8: 207–216, 1996.PubMedGoogle Scholar
  22. 22.
    Lammers WJ, Ver Donck L, Schuurkes JA, and Stephen B. Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo. Can J Physiol Pharmacol 83: 1031–1043, 2005. doi: 10.1139/y05-084 PubMedCrossRefGoogle Scholar
  23. 23.
    Lammers, W. J., L. Ver Donck, B. Stephen, D. Smets, and J. A. Schuurkes. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135:1601–1611, 2008.Google Scholar
  24. 24.
    Levanon D and Chen JZ. Electrogastrography: its role in managing gastric disorders. J Pediatr Gastroenterol Nutr 27: 431–443, 1998. doi: 10.1097/00005176-199810000-00014 PubMedCrossRefGoogle Scholar
  25. 25.
    Lewis S and McIndoe AK. Cleaning, disinfection and sterilization of equipment. Anaesthesia and Intensive Care Medicine 5: 360–363, 2004. doi: 10.1383/anes.5.11.360.53403 CrossRefGoogle Scholar
  26. 26.
    Lin X and Chen JZ. Abnormal gastric slow waves in patients with functional dyspepsia assessed by multichannel electrogastrography. Am J Physiol Gastrointest Liver Physiol 280: G1370–1375, 2001.PubMedGoogle Scholar
  27. 27.
    McNearney T, Lin X, Shrestha J, Lisse J, and Chen JD. Characterization of gastric myoelectrical rhythms in patients with systemic sclerosis using multichannel surface electrogastrography. Dig Dis Sci 47: 690–698, 2002. doi: 10.1023/A:1014759109982 PubMedCrossRefGoogle Scholar
  28. 28.
    Nash MP, Mourad A, Clayton RH, Sutton PM, Bradley CP, Hayward M, Paterson DJ, and Taggart P. Evidence for multiple mechanisms in human ventricular fibrillation. Circulation 114: 536–542, 2006. doi: 10.1161/CIRCULATIONAHA.105.602870 PubMedCrossRefGoogle Scholar
  29. 29.
    Ordog T, Redelman D, Horvath VJ, Miller LJ, Horowitz B, and Sanders KM. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract. Cytometry A 62: 139–149, 2004. doi: 10.1002/cyto.a.20078 PubMedCrossRefGoogle Scholar
  30. 30.
    Shenasa M, Borggrefe M, and Breithardt G. Cardiac Mapping. New York: Futura Press, 2003.Google Scholar
  31. 31.
    Nakayama, S., K. Shimono, H.-N. Liu, H. Jiko, N. Katayama, T. Tomita, and K. Goto. Pacemaker phase shift in the absence of neural activity in guinea-pig stomach: a microelectrode array study. J. Physiol. 576:727–738, 2006. doi: 10.1113/jphysiol.2006.118893 Google Scholar
  32. 32.
    Sih HJ and Berbari EJ. Chapter 3: Methodology of Cardiac Mapping. In Cardiac Mapping. New York: Futura Press, 2003.Google Scholar
  33. 33.
    Turnbull GK, Ritcey SP, Stroink G, and van Leeuwen P. Spatial and temporal variations in the magnetic fields produced by human gastrointestinal activity Medical and Biological Engineering and Computing 7: 549–554, 1999. doi: 10.1007/BF02513347 CrossRefGoogle Scholar
  34. 34.
    Vittal H, Farrugia G, Gomez G, and Pasricha PJ. Mechanisms of Disease: the pathological basis of gastroparesis—a review of experimental and clinical studies. Nature Clinical Practice Gastroenterology & Hepatology 4: 336–346, 2007. doi: 10.1038/ncpgasthep0838 PubMedCrossRefGoogle Scholar
  35. 35.
    Yang, C., Z. Fang, X. Wu, A. Lou, and J. Lu. Dynamic 3D epicardial mapping of whole-atrium. In: World Congress on Medical Physics and Biomedical Engineering. Berlin, Heidelberg: Springer, 2007, pp. 894–897.Google Scholar
  36. 36.
    Zhou S, Chang CM, Wu TJ, Miyauchi Y, Okuyama Y, Park AM, Hamabe A, Omichi C, Hayashi H, Brodsky LA, Mandel WJ, Ting CT, Fishbein MC, Karagueuzian HS, and Chen PS. Nonreentrant focal activations in pulmonary veins in canine model of sustained atrial fibrillation. Am J Physiol Heart Circ Physiol 283: H1244–1252, 2002.PubMedGoogle Scholar
  37. 37.
    Zhou, T., W. Lu, C. Yang, and Z. Fang. A visual expression to show epicardial electrical activity comprehensively. In: Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on 16–18 May 2008, pp. 808–811.Google Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Peng Du
    • 1
    Email author
  • G. O’Grady
    • 1
    • 2
  • J. U. Egbuji
    • 1
    • 2
  • W. J. Lammers
    • 3
  • D. Budgett
    • 1
  • P. Nielsen
    • 1
    • 4
  • J. A. Windsor
    • 2
  • A. J. Pullan
    • 1
    • 4
    • 5
  • L. K. Cheng
    • 1
  1. 1.Bioengineering InstituteThe University of AucklandAucklandNew Zealand
  2. 2.Department of SurgeryThe University of AucklandAucklandNew Zealand
  3. 3.Department of PhysiologyAl Ain UniversityAl AinUnited Arab Emirates
  4. 4.Department of Engineering ScienceThe University of AucklandAucklandNew Zealand
  5. 5.Department of SurgeryVanderbilt UniversityNashvilleUSA

Personalised recommendations