Advertisement

Annals of Biomedical Engineering

, Volume 37, Issue 5, pp 1028–1042 | Cite as

Parameter Estimation for Linear Compartmental Models—A Sensitivity Analysis Approach

  • Barbara Juillet
  • Cécile Bos
  • Claire Gaudichon
  • Daniel Tomé
  • Hélène Fouillet
Article

Abstract

Linear compartmental models are useful, explanatory tools, that have been widely used to represent the dynamic behavior of complex biological systems. This paper addresses the problem of the numerical identification of such models, i.e., the estimation of the parameter values that will generate predictions closest to experimental observations. Traditional local optimization techniques find it difficult to arrive at satisfactory solutions to such a parameter estimation problem, especially when the number of parameters is large and/or few data are available from experiments. We present herewith a method based on a prior sensitivity analysis, which enables division of a large optimization problem into several smaller and simpler subproblems, on which only sensitive parameters are estimated, before the whole optimization problem is tackled from starting points that are already close to the optimum values. This method has been applied successfully to a linear 13-compartment, 21-parameter model describing the postprandial metabolism of dietary nitrogen in humans. The effectiveness of the method has been demonstrated using simulated and real data obtained in the intestine, blood and urine of healthy humans after the ingestion of a [15N]-labeled protein meal.

Keywords

Biological system modeling Inverse problem Parameter estimation Optimization methods Sensitivity Algorithms Compartmental models Nitrogen metabolism Dietary proteins Tissue distribution 

Abbreviations

BU

body urea

CV

coefficient of variation

d0

noise-free data

d1

low homogeneous noise data

d2

high homogeneous noise data

d3

high heterogeneous noise data

E

ileal effluents

G

gastric content

IL1

proximal intestinal lumen

IL2

distal intestinal lumen

LLF

log of the likelihood function

N

nitrogen

ODE

ordinary differential equations

PAA

peripheral free amino acids

PP

peripheral proteins

SA

sensitivity analysis

SAA

splanchnic free amino acids

SCP

splanchnic constitutive proteins

SEP

splanchnic exported proteins

UU

urinary urea

UA

urinary ammonia

Notes

Acknowledgments

The authors would like to thank M. P. Saccomani from the University of Padova (Padova, Italy) for having checked the a priori identifiability of the studied model, and for helpful and constructive discussions on the global a priori identifiability of compartmental models. The authors also thank E. Cancès from the École Nationale des Ponts et Chaussées (Paris, France) and P. Michel from the École Nationale Supérieure (Paris, France) for helpful and stimulating discussions.

References

  1. 1.
    Audoly, S., G. Bellu, L. D’Angiò, M. P. Saccomani, and C. Cobelli. Global identifiability of nonlinear models of biological systems. IEEE Trans. Biomed. Eng. 48: 55–65, 2001.PubMedCrossRefGoogle Scholar
  2. 2.
    Audoly, S., L. D’Angio, M. P. Saccomani, and C. Cobelli. Global identifiability of linear compartmental models - a computer algebra algorithm. IEEE Trans. Biomed. Eng. 45: 36–47, 1998.PubMedCrossRefGoogle Scholar
  3. 3.
    Bard, Y. Nonlinear Parameter Estimation. New York: Academic, 1974.Google Scholar
  4. 4.
    Biolo, G., D. Chinkes, X. J. Zhang, and R. R. Wolfe. A new model to determine in vivo the relationship between amino acid transmembrane transport and protein kinetics in muscle. JPEN J. Parenter. Enteral Nutr. 16: 305–315, 1992.PubMedCrossRefGoogle Scholar
  5. 5.
    Biolo, G., P. Tessari, S. Inchiostro, D. Bruttomesso, C. Fongher, L. Sabadin, M. G. Fratton, A. Valerio, and A. Tiengo. Leucine and phenylalanine kinetics during mixed meal ingestion: a multiple tracer approach. Am. J. Physiol. 262: E455–E463, 1992.PubMedGoogle Scholar
  6. 6.
    Capaldo, B., A. Gastaldelli, S. Antoniello, M. Auletta, F. Pardo, D. Ciociaro, R. Guida, E. Ferrannini, and L. Sacca. Splanchnic and leg substrate exchange after ingestion of a natural mixed meal in humans. Diabetes 48: 958–966, 1999.PubMedCrossRefGoogle Scholar
  7. 7.
    Carson E. R., and C. Cobelli. Modeling methodology for physiology and medicine. San Diego: Academic Press, 2001.Google Scholar
  8. 8.
    Cayol, M., Y. Boirie, F. Rambourdin, J. Prugnaud, P. Gachon, B. Beaufrere, and C. Obled. Influence of protein intake on whole body and splanchnic leucine kinetics in humans. Am. J. Physiol. Endocrinol. Metab. 272: E584–E591, 1997.Google Scholar
  9. 9.
    Cobelli, C., E. R. Carson, L. Finkelstein, and M. S. Leaning. ‘alidation of simple and complex models in physiology and medicine. Am. J. Physiol. 246: R259–266, 1984.PubMedGoogle Scholar
  10. 10.
    Cobelli C., and A. Caumo. Using what is accessible to measure that which is not: necessity of model of system. Met. 47: 1009–1035, 1998.PubMedCrossRefGoogle Scholar
  11. 11.
    Cobelli C., and D. M. Foster. Compartmental models: theory and practice using the SAAM II software system. Adv. Exp. Med. Biol. 445: 79–101, 1998.PubMedGoogle Scholar
  12. 12.
    Cobelli, C., M. P. Saccomani, P. Tessari, G. Biolo, L. Luzi, and D. E. Matthews. Compartmental model of leucine kinetics in humans. Am. J. Physiol. Endocrinol. Metab. 261: E539–E550, 1991.Google Scholar
  13. 13.
    Deutz, N. E., M. J. Bruins, and P. B. Soeters. Infusion of soy and casein protein meals affects interorgan amino acid metabolism and urea kinetics differently in pigs. J. Nutr. 128: 2435–2445, 1998.PubMedGoogle Scholar
  14. 14.
    Elia, M., P. Folmer, A. Schlatmann, A. Goren, and S. Austin. Amino acid metabolism in muscle and in the whole body of man before and after ingestion of a single mixed meal. Am. J. Clin. Nutr. 49: 1203–1210, 1989.PubMedGoogle Scholar
  15. 15.
    Fletcher, R. Practical methods of optimization. Chichester: John Wiley and Sons, 1987.Google Scholar
  16. 16.
    Foster, D. M. Developing and testing integrated multicompartmental models to describe a single-input multiple-output study using SAAM II software system. Adv. Exp. Med. Biol. 445: 59–78, 1998.PubMedGoogle Scholar
  17. 17.
    Fouillet, H., C. Bos, C. Gaudichon, and D. Tome. Approaches to quantifying protein metabolism in response to nutrient ingestion. J. Nutr. 132: 3208S–3218S, 2002.PubMedGoogle Scholar
  18. 18.
    Fouillet, H., C. Gaudichon, C. Bos, F. Mariotti, and D. Tome. Contribution of plasma proteins to splanchnic and total anabolic utilization of dietary nitrogen in humans. Am. J. Physiol. Endocrinol. Metab. 279: E88–E97, 2003.Google Scholar
  19. 19.
    Fouillet, H., C. Gaudichon, F. Mariotti, C. Bos, J. F. Huneau, and D. Tome. Energy nutrients modulate the splanchnic sequestration of dietary nitrogen in humans: a compartmental analysis. Am. J. Physiol. Endocrinol. Metab. 281: E248–E260, 2001.PubMedGoogle Scholar
  20. 20.
    Fouillet, H., C. Gaudichon, F. Mariotti, S. Mahe, P. Lescoat, J. F. Huneau, and D. Tome. Compartmental modeling of postprandial dietary nitrogen distribution in humans. Am. J. Physiol. Endocrinol. Metab. 279: E161–E175, 2000.PubMedGoogle Scholar
  21. 21.
    Gausseres, N., S. Mahe, R. Benamouzig, C. Luengo, H. Drouet, J. Rautureau, and D. Tome. The gastro-ileal digestion of 15N-labelled pea nitrogen in adult humans. Br. J. Nutr. 76: 75–85, 1996.PubMedCrossRefGoogle Scholar
  22. 22.
    Guus, C., E. Boender, and H. E. Romeijn. Stochastics methods. In: Handbook of global optimization edited by R. Horst and P. M. Pardalos. Dordrecht: Kluwer Academic Publishers, 1995, pp. 829–869.Google Scholar
  23. 23.
    Humphrey D. G., and J. R. Wilson. A revised simplex search procedure for stochastic simulation response surface optimization. Informs J. Computing 12: 272–283, 2000.CrossRefGoogle Scholar
  24. 24.
    Jacquez, J. A. Compartmental analysis in biology and medicine. Ann Arbor, M.I.: BioMedware, 1996.Google Scholar
  25. 25.
    Juillet, B., J. Salomon, D. Tome, and H. Fouillet. Development and calibration of a modeling tool for the analysis of clinical data in human nutrition. ESAIM: Proc. 14: 124–155, 2005.Google Scholar
  26. 26.
    Levenberg, K. A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math. 2: 164–168, 1944.Google Scholar
  27. 27.
    Lowe, N. M., D. M. Shames, L. R. Woodhouse, J. S. Matel, R. Roehl, M. P. Saccomani, G. Toffolo, C. Cobelli, and J. C. King. A compartmental model of zinc metabolism in healthy women using oral and intravenous stable isotope tracers. Am. J. Clin. Nutr. 65: 1810–1809, 1997.PubMedGoogle Scholar
  28. 28.
    Marquardt, D. W. An algorithm for least squares estimation of nonlinear parameters. SIAM J. 11: 431–441, 1963.Google Scholar
  29. 29.
    Mendes P., and D. B. Kell. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14: 869–883, 1998.PubMedCrossRefGoogle Scholar
  30. 30.
    Miller, L. V., N. F. Krebs, and K. M. Hambidge. Human zinc metabolism: advances in the modeling of stable isotope data. Adv. Exp. Med. Biol. 445: 253–269, 1998.PubMedGoogle Scholar
  31. 31.
    Moles, C. G., P. Mendes, and J. R. Banga. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13: 2467–2474, 2003.PubMedCrossRefGoogle Scholar
  32. 32.
    Morens, C., C. Bos, M. E. Pueyo, R. Benamouzig, N. Gausseres, C. Luengo, D. Tome, and C. Gaudichon. Increasing habitual protein intake accentuates differences in postprandial dietary nitrogen utilization between protein sources in humans. J. Nutr. 133: 2733–2740, 2003.PubMedGoogle Scholar
  33. 33.
    Morens, C., C. Gaudichon, C. C. Metges, G. Fromentin, A. Baglieri, P. C. Even, J. F. Huneau, and D. Tome. A high-protein meal exceeds anabolic and catabolic capacities in rats adapted to a normal protein diet. J. Nutr. 130: 2312–2321, 2000.PubMedGoogle Scholar
  34. 34.
    Nelder J. A., and R. Mead. A simplex method for function minimization. Computer J. 7: 308–313, 1965.Google Scholar
  35. 35.
    Pillonetto, G., G. Sparacino, and C. Cobelli. Numerical non-identifiability regions of the minimal model of glucose kinetics: superiority of Bayesian estimation. Math. Biosci. 184: 53–67, 2003.PubMedCrossRefGoogle Scholar
  36. 36.
    Rabitz, H., Ö. F. Alis, J. Shorter, and K. Shim. Efficient input-output model representations. Computer Phys. Comm. 117: 11–20, 1999.CrossRefGoogle Scholar
  37. 37.
    Rodriguez-Fernandez, M., P. Mendes, and J. R. Banga. A hybrid approach for efficient and robust parameter estimation in biochemical pathways. BioSystems 83: 248–265, 2006.PubMedCrossRefGoogle Scholar
  38. 38.
    Saccomani, M. P., R. C. Bonadonna, D. M. Bier, R. A. DeFronzo, and C. Cobelli. A model to measure insulin effects on glucose transport and phosphorylation in muscle: a three-tracer study. Am. J. Physiol. Endocrinol. Metab. 270: E170–E185, 1996.Google Scholar
  39. 39.
    Saltelli, A., S. Tarantola, and F. Compologo. Sensitivity analysis as an ingredient of modelling. Stat. Sci. 15: 377–395, 2000.CrossRefGoogle Scholar
  40. 40.
    Schittkowski, K. Numerical Data Fitting in Dynamical Systems—A Practical Introduction with Applications and Software. Kluwer Academic Publishers, 2002.Google Scholar
  41. 41.
    Shyr, L. J., W. C. Griffith, and B. B. Boecker. An optimization strategy for a biokinetic model of inhaled radionuclides. Fundam. Appl. Toxicol. 16: 423–434, 1991.PubMedCrossRefGoogle Scholar
  42. 42.
    Sobol’, I. M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1: 407-414, 1993.Google Scholar
  43. 43.
    Stoll, B., D. G. Burrin, J. Henry, H. Yu, F. Jahoor, and P. J. Reeds. Dietary amino acids are the preferential source of hepatic protein synthesis in piglets. J. Nutr. 128: 1517–1524, 1998.PubMedGoogle Scholar
  44. 44.
    Tessari, P., S. Inchiostro, M. Zanetti, and R. Barazzoni. A model of skeletal muscle leucine kinetics measured across the human forearm. Am. J. Physiol. Endocrinol. Metab. 269: E127–E136, 1995.Google Scholar
  45. 45.
    Tsai K. Y., and F. S. Wang. Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 21: 1180–1188, 2005.PubMedCrossRefGoogle Scholar
  46. 46.
    Twisk, J., D. L. Gillian-Daniel, A. Tebon, L. Wang, P. H. R. Barrett, and A. D. Attie. The role of the LDL receptor in apolipoprotein B secretion. J. Clin. Invest. 105: 521–532, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Barbara Juillet
    • 1
  • Cécile Bos
    • 1
  • Claire Gaudichon
    • 1
  • Daniel Tomé
    • 1
  • Hélène Fouillet
    • 1
  1. 1.UMR914 Nutrition Physiology and Ingestive BehaviorINRA, AgroParisTechParisFrance

Personalised recommendations