Annals of Biomedical Engineering

, Volume 37, Issue 10, pp 2048–2063

Design of Multifunctional Nanomedical Systems



Multifunctional nanoparticles hold great promise for drug/gene delivery and simultaneous diagnostics and therapeutics (“theragnostics”) including use of core materials that provide in vivo imaging and opportunities for externally modulated therapeutic interventions. Multilayered nanoparticles can act as nanomedical systems with on-board molecular programming done through the chemistry of highly specialized layers to accomplish complex and potentially decision-making tasks. The targeting process itself is a multi-step process consisting of initial cell recognition through cell surface receptors, cell entry through the membrane in a manner to prevent undesired alterations of the nanomedical system, re-targeting to the appropriate sub-region of the cell where the therapeutic package can be localized, and potentially control of that therapeutic process through feedback systems using molecular biosensors. This paper describes a bionanoengineering design process in which sophisticated nanomedical platform systems can be designed for diagnosis and treatment of disease. The feasibility of most of these subsystems has been demonstrated, but the full integration of these interacting sub-components remains a challenge for the field. Specific examples of sub-components developed for specific applications are described.


Nanomedicine Nanoparticles Bionanoengineering Bionanotechnology 


  1. 1.
    Ahmad Z., Sharma S., Khuller G. K. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine 2007 3(3):239–243PubMedGoogle Scholar
  2. 2.
    Alexiou C., Jurgons R., Schmid R., Hilpert A., Bergmann C., Parak F., et al. In vitro and in vivo investigations of targeted chemotherapy with magnetic particles. J. Magn. Magn. Mater. 2005 293:389–393. doi:10.1016/j.jmmm.2005.02.036 CrossRefGoogle Scholar
  3. 3.
    Alivisatos A. P., Gu W., Larabell C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 2005 7:55–76. doi:10.1146/annurev.bioeng.7.060804.100432 CrossRefPubMedGoogle Scholar
  4. 4.
    Arbab A. S., Bashaw L. A., Miller B. R., Jordan E. K., Lewis B. K., Kalish H, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 2003;229(3):838–846. doi:10.1148/radiol.2293021215 CrossRefPubMedGoogle Scholar
  5. 5.
    Arbab A., Yocum G., Kalish H., Jordan E., Anderson S., Khakoo A., et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Transplantation 2004;104(4):1217–1223Google Scholar
  6. 6.
    Astete, C. E., and C. M. Sabliov. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17(3):247–289, 2006Google Scholar
  7. 7.
    Averitt R. D., Westcott S. L., Halas N. J. Linear optical properties of gold nanoshells. J Opt Soc Am B 1999;16(10):1824–1832. doi:10.1364/JOSAB.16.001824 CrossRefGoogle Scholar
  8. 8.
    Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–3070. doi:10.1021/nl071546n CrossRefPubMedGoogle Scholar
  9. 9.
    Beebe S. J., Fox P. M., Rec L. J., Willis E. L., Schoenbach K. H. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J. 2003;17(11):1493–1495PubMedGoogle Scholar
  10. 10.
    Bergen, J. M., H. A. von Recum, T. T. Goodman, A. P. Massey, and S. H. Pun. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol. Biosci. 6(7):506–516, 2006Google Scholar
  11. 11.
    Berkova Z., Kriz J., Girman P., Zacharovova K., Koblas T., Dovolilova E., et al. Vitality of pancreatic islets labeled for magnetic resonance imaging with iron particles. Transplant Proc 2005 37(8):3496–3498. doi:10.1016/j.transproceed.2005.09.052 CrossRefPubMedGoogle Scholar
  12. 12.
    Berry C. C. Intracellular delivery of nanoparticles via the HIV-1 tat peptide. Nanomed 2008;3(3):357–365. doi:10.2217/17435889.3.3.357 CrossRefPubMedGoogle Scholar
  13. 13.
    Berry C. C., Wells S., Charles S., Aitchison G., Curtis A. S. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 2004;25(23):5405–5413. doi:10.1016/j.biomaterials.2003.12.046 CrossRefPubMedGoogle Scholar
  14. 14.
    Berry C. C., Wells S., Charles S., Curtis A. S. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 2003;24(25):4551–4557. doi:10.1016/S0142-9612(03)00237-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Bharali, D. J., D. W. Lucey, H. Jayakumar, H. E. Pudavar, and P. N. Prasad. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J. Am. Chem. Soc. 127(32):11364–11371, 2005Google Scholar
  16. 16.
    Bomati-Miguel O., Morales M. P., Tartaj P., Ruiz-Cabello J., Bonville P., Santos M., et al. Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials 2005 26(28):5695–5703. doi:10.1016/j.biomaterials.2005.02.020 CrossRefPubMedGoogle Scholar
  17. 17.
    Bulte J. W., Douglas T., Witwer B., Zhang S. C., Strable E., Lewis B. K., et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001;19(12):1141–1147. doi:10.1038/nbt1201-1141 CrossRefPubMedGoogle Scholar
  18. 18.
    Cai, W., D-W. Shin, K. Chen, O. Gheysens, Q. Cao, S. X. Wang, S. S. Gambhir, and X. Chen. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano. Lett. 6(4):669–676, 2006Google Scholar
  19. 19.
    Carles-Kinch K., Kilpatrick K. E., Stewart J. C., Kinch M. S. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 2002;62(10):2840–2847PubMedGoogle Scholar
  20. 20.
    Chan W. C., Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998 281(5385):2016–2018. doi:10.1126/science.281.5385.2016 CrossRefPubMedGoogle Scholar
  21. 21.
    Chan W. H., Shiao N. H., Lu P. Z. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett 2006CrossRefPubMedGoogle Scholar
  22. 22.
    Cho S. J., Maysinger D., Jain M., Roder B., Hackbarth S., Winnik F. M. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 2007;23(4):1974–1980. doi:10.1021/la060093j CrossRefPubMedGoogle Scholar
  23. 23.
    Chu T. C., Shieh F., Lavery L. A., Levy M., Richards-Kortum R., Korgel B. A., et al. Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosens Bioelectron 2006 15;21(10):1859–1866. doi:10.1016/j.bios.2005.12.015 CrossRefGoogle Scholar
  24. 24.
    Clark I. B., Hanania E. G., Stevens J., Gallina M., Fieck A., Brandes R., et al. Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types. J Biomed Opt 2006;11(1):014034. doi:10.1117/1.2168148 CrossRefPubMedGoogle Scholar
  25. 25.
    Dass C. R., Choong P. F. Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J Control Release 2006 113(2):155–163. doi:10.1016/j.jconrel.2006.04.009 CrossRefPubMedGoogle Scholar
  26. 26.
    Delehanty J. B., Medintz I. L., Pons T., Brunel F. M., Dawson P. E., Mattoussi H. Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjug. Chem. 2006;17(4):920–927. doi:10.1021/bc060044i CrossRefPubMedGoogle Scholar
  27. 27.
    DeNardo S. J., DeNardo G. L., Miers L. A., Natarajan A., Foreman A. R., Gruettner C., et al. Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res 2005;11(19 Pt 2):7087s–7092s. doi:10.1158/1078-0432.CCR-1004-0022 CrossRefPubMedGoogle Scholar
  28. 28.
    Derfus A. M., Chan, W. C. W., Bhatia, S. N. Probing the cytotoxicity semiconductor quantum dots. Nano Lett 2004;4(1):11–18. doi:10.1021/nl0347334 CrossRefGoogle Scholar
  29. 29.
    Derfus A. M., Chen A. A., Min D. H., Ruoslahti E., Bhatia S. N. Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem. 2007 18(5):1391–1396. doi:10.1021/bc060367e CrossRefPubMedGoogle Scholar
  30. 30.
    El-Sayed I. H., Huang X., El-Sayed M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006 239(1):129–135. doi:10.1016/j.canlet.2005.07.035 CrossRefPubMedGoogle Scholar
  31. 31.
    Esmaeili F., Ghahremani M. H., Ostad S. N, Atyabi F., Seyedabadi M., Malekshahi M. R., et al. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target 2008;16(5):415–423. doi:10.1080/10611860802088630 CrossRefPubMedGoogle Scholar
  32. 32.
    Famulok M., Mayer G., Blind M. Nucleic acid aptamers-from selection in vitro to applications in vivo. Acc Chem Res 2000;33(9):591–599. doi:10.1021/ar960167q CrossRefPubMedGoogle Scholar
  33. 33.
    Farjo R., Skaggs J., Quiambao A. B., Cooper M. J., Naash M. I. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE 2006 1:e38. doi:10.1371/journal.pone.0000038 CrossRefPubMedGoogle Scholar
  34. 34.
    Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 2003;228(2):480–487. doi:10.1148/radiol.2281020638 CrossRefPubMedGoogle Scholar
  35. 35.
    Frank JA, Zywicke H, Jordan EK, Mitchell J, Lewis BK, Miller B, et al. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 2002 2(Suppl):S484–487. doi:10.1016/S1076–6332(03)80271-4 CrossRefPubMedGoogle Scholar
  36. 36.
    Gao X., Cui Y, Levenson R. M., Chung L. W., Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22(8):969–976. doi:10.1038/nbt994 CrossRefPubMedGoogle Scholar
  37. 37.
    Gehl J. Electroporation: theory, methods, perspectives for drug delivery, gene therapy and research. Acta physiologica Scandinavica 2003;177(4):437–447. doi:10.1046/j.1365-201X.2003.01093.x CrossRefPubMedGoogle Scholar
  38. 38.
    Gupta A. K., Berry C., Gupta M., Curtis A. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobioscience 2003;2(4):255–261. doi:10.1109/TNB.2003.820279 CrossRefGoogle Scholar
  39. 39.
    Gupta A. K., Curtis A. S. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 2004;15(4):493–496. doi:10.1023/B:JMSM.0000021126.32934.20 CrossRefPubMedGoogle Scholar
  40. 40.
    Gupta A. K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012 CrossRefPubMedGoogle Scholar
  41. 41.
    Gupta A. K., Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 2005;26(13):1565–1573. doi:10.1016/j.biomaterials.2004.05.022 CrossRefPubMedGoogle Scholar
  42. 42.
    Haglund E., Seale-Goldsmith M.-M., Dhawan D., Stewart J., Ramos-Vara J., Cooper C. L., et al. Peptide targeting of quantum dots to human breast cancer cells. Proc of SPIE 2008; 6866(68660):S1–S8Google Scholar
  43. 43.
    Hicke B. J., Stephens A. W., Gould T., Chang Y. F., Lynott C. K., Heil J., et al. Tumor targeting by an aptamer. J Nucl Med 2006;47(4):668–678PubMedGoogle Scholar
  44. 44.
    Hussain S., Hess K., Gearhart J., Geiss K., Schlager J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro 2005;19:975–983. doi:10.1016/j.tiv.2005.06.034 CrossRefPubMedGoogle Scholar
  45. 45.
    Ito A., Kuga Y., Honda H., Kikkawa H., Horiuchi A., Watanabe Y., et al. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 2004;212(2):167–175. doi:10.1016/j.canlet.2004.03.038 CrossRefPubMedGoogle Scholar
  46. 46.
    Jang J. S., Kim S. Y., Lee S. B., Kim K. O., Han J. S., Lee Y. M. Poly(ethylene glycol)/poly(epsilon-caprolactone) diblock copolymeric nanoparticles for non-viral gene delivery: the role of charge group and molecular weight in particle formation, cytotoxicity and transfection. J Control Release 2006 113(2):173–182. doi:10.1016/j.jconrel.2006.03.021 CrossRefPubMedGoogle Scholar
  47. 47.
    Jiang, H. L., Y. K. Kim, R. Arote, J. W. Nah, M. H. Cho, Y. J. Choi, et al. Chitosan-graft-polyethylenimine as a gene carrier. J. Control. Release 117(2):273–280, 2006.Google Scholar
  48. 48.
    Kamau S. W., Hassa P. O., Steitz B., Petri-Fink A., Hofmann H., Hofmann-Amtenbrink M., et al. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res 2006 34(5):e40. doi:10.1093/nar/gkl035 CrossRefPubMedGoogle Scholar
  49. 49.
    Kiewlich D., Zhang J., Gross C., Xia W., Larsen B., Cobb R. R., et al. Anti-EphA2 antibodies decrease EphA2 protein levels in murine CT26 colorectal and human MDA-231 breast tumors but do not inhibit tumor growth. Neoplasia 2006;8(1):18–30. doi:10.1593/neo.05544 CrossRefPubMedGoogle Scholar
  50. 50.
    Kim, H., S. H. Lee, K. H. Im, K. N. Kim, K. M. Kim, I. B. Shim, et al. Surface-modified magnetite nanoparticles for hyperthermia: preparation, characterization, and cytotoxicity studies. Curr. Appl. Phys. 6(S1):e242–e246, 2006.Google Scholar
  51. 51.
    Kinch M. S., Carles-Kinch K. Overexpression functional alterations of the EphA2 tyrosine kinase in cancer. Clin Exp Metastasis 2003;20(1):59–68. doi:10.1023/A:1022546620495 CrossRefPubMedGoogle Scholar
  52. 52.
    Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005;5(2):331–338. doi:10.1021/nl047996m CrossRefPubMedGoogle Scholar
  53. 53.
    Krauel, K., N. M. Davies, S. Hook, and T. Rades. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. J. Control. Release. 106(1–2):76–87, 2005Google Scholar
  54. 54.
    Krotz F., Sohn H. Y., Gloe T., Plank C., Pohl U. Magnetofection potentiates gene delivery to cultured endothelial cells. J Vasc Res 2003;40(5):425–434. doi:10.1159/000073901 CrossRefPubMedGoogle Scholar
  55. 55.
    Krotz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, et al. Magnetofection–a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 2003;7(5 Pt 1):700–710. doi:10.1016/S1525-0016(03)00065-0 CrossRefPubMedGoogle Scholar
  56. 56.
    Kumar C. S., Leuschner C., Doomes E. E., Henry L., Juban M., Hormes J. Efficacy of lytic peptide-bound magnetite nanoparticles in destroying breast cancer cells. J Nanosci Nanotechnol 2004 4(3):245–249PubMedGoogle Scholar
  57. 57.
    Leary J. F. Strategies for rare cell detection and isolation. Methods in cell biology 1994;42 Pt B:331–358CrossRefPubMedGoogle Scholar
  58. 58.
    Leary, J. F., and Prow T. Multilayered nanomedicine delivery system and method. International Patent Application PCT/US05/06692 on 3/4/2005, 2005.Google Scholar
  59. 59.
    Levy R., Thanh N. T., Doty R. C., Hussain I., Nichols R. J., Schiffrin D. J., et al. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 2004;126(32):10076–10084. doi:10.1021/ja0487269 CrossRefPubMedGoogle Scholar
  60. 60.
    Li, J., C. Wu, F. Gao, R. Zhang, G. Lv, D. Fu, B. Chen, and X. Wang. In vitro study of drug accumulation in cancer cells via specific association with CdS nanoparticles. Bioorg. Med. Chem. Lett. 16(18):4808–4812, 2006Google Scholar
  61. 61.
    Loo C., Hirsch L., Lee M. H., Chang E., West J., Halas N., et al. Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 2005;30(9):1012–1014. doi:10.1364/OL.30.001012 CrossRefPubMedGoogle Scholar
  62. 62.
    Loo C., Lowery A., Halas N., West J., Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5(4):709–711. doi:10.1021/nl050127s CrossRefPubMedGoogle Scholar
  63. 63.
    Lovric J., Bazzi H. S., Cuie Y., Fortin G. R., Winnik F. M., Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of molecular medicine (Berlin, Germany) 2005;83(5):377–385. doi:10.1007/s00109-004-0629-x CrossRefPubMedGoogle Scholar
  64. 64.
    Lovric J., Cho S. J., Winnik F. M., Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 2005;12(11):1227–1234. doi:10.1016/j.chembiol.2005.09.008 CrossRefPubMedGoogle Scholar
  65. 65.
    Lutz J. F., Stiller S., Hoth A., Kaufner L., Pison U., Cartier R. One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 2006 7(11):3132–3138. doi:10.1021/bm0607527 CrossRefPubMedGoogle Scholar
  66. 66.
    McCarthy J. R., Kelly K. A., Sun E. Y., Weissleder R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2007;2(2):153–167. doi:10.2217/17435889.2.2.153 CrossRefPubMedGoogle Scholar
  67. 67.
    Mohapatra S., Pramanik N., Mukherjee S., Ghosh S. K., Pramanik P. A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications. Journal of Material Science 2007 42:7566–7574. doi:10.1007/s10853-007-1597-7 CrossRefGoogle Scholar
  68. 68.
    Moller W., Takenaka S., Buske N., Felten K., Heyder J. Relaxation of ferromagnetic nanoparticles in macrophages: in vitro and in vivo studies. J. Magn. Magn. Mater. 2005 293:241–251. doi:10.1016/j.jmmm.2005.02.017 CrossRefGoogle Scholar
  69. 69.
    Nayar, S., M. Sinha, D. Basu, and A. Sinha. Synthesis and sintering of biomimetic hydroxyapatite nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med. 17(11):1063–1068, 2006Google Scholar
  70. 70.
    Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005 113(7):823–839CrossRefPubMedGoogle Scholar
  71. 71.
    Olton, D., J. Li, M. E. Wilson, T. Rogers, J. Close, L. Huang, P. N. Kumta, and C. Sfeir. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency. Biomaterials 28(6):1267–1279, 2007Google Scholar
  72. 72.
    Peng, J., X. He, K. Wang, W. Tan, H. Li, X. Xing, and Y. Wang. An antisense oligonucleotide carrier based on amino silica nanoparticles for antisense inhibition of cancer cells. Nanomed. Nanotechnol. Biol. Med. 2(2):113–120, 2006Google Scholar
  73. 73.
    Prabha S., Labhasetwar V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells. Mol Pharm 2004 1(3):211–219. doi:10.1021/mp049970± CrossRefPubMedGoogle Scholar
  74. 74.
    Prow T., Grebe R., Merges C., Smith J. N., McLeod D. S., Leary J. F., et al. Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells. Molecular Vision 2006;12:616–625PubMedGoogle Scholar
  75. 75.
    Prow T., Smith J. N., Grebe R., Salazar J. H., Wang N., Kotov N., et al. Construction, gene delivery, and expression of DNA tethered nanoparticles. Mol Vis 2006;12:606–615PubMedGoogle Scholar
  76. 76.
    RaviKumar M. N. V., Mohapatra S. S., Kong X., Jena P. K., Bakowsky U., Lehrd C. M. Cationic poly(lactide-co-glycolide) nanoparticles as efficient in vivo gene transfection agents. Journal of Nanoscience and Nanotechnology 2004;4(8):990–994. doi:10.1166/jnn.2004.130 CrossRefGoogle Scholar
  77. 77.
    Reubi J. C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 2003;24(4):389–427. doi:10.1210/er.2002-0007 CrossRefPubMedGoogle Scholar
  78. 78.
    Rozenzhak, S. M., M. P. Kadakia, T. M. Caserta, T. R. Westbrook, M. O. Stone, and R. R. Naik. Cellular internalization and targeting of semiconductor quantum dots. Chem. Commun. 17:2217–2219, 2005Google Scholar
  79. 79.
    Ryman-Rasmussen, J. P. R., J. E. Riviere, and N. A. Monteiro-Riviere. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J. Invest. Dermatol. 127(1):143–153, 2006.Google Scholar
  80. 80.
    Shadidi M., Sioud M. Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J. 2003;17(2):256–258PubMedGoogle Scholar
  81. 81.
    Shen H., Long D., Zhu L., Li X., Dong Y., Jia N., et al. Magnetic force microscopy analysis of apoptosis of HL-60 cells induced by complex of antisense oligonucleotides and magnetic nanoparticles. Biophysical Chemistry 2006;122:1–4. doi:10.1016/j.bpc.2006.01.003 CrossRefPubMedGoogle Scholar
  82. 82.
    Shieh DB, Cheng FY, Su CH, Yeh CS, Wu MT, Wu YN, et al. Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents. Biomaterials 2005 26(34):7183–7191. doi:10.1016/j.biomaterials.2005.05.020 CrossRefPubMedGoogle Scholar
  83. 83.
    Sudimack J., Lee R. J. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000 41(2):147–162. doi:10.1016/S0169-409X(99)00062-9 CrossRefPubMedGoogle Scholar
  84. 84.
    Tada H., Higuchi H., Wanatabe T. M., Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 2007;67(3):1138–1144. doi:10.1158/0008-5472.CAN-06-1185 CrossRefPubMedGoogle Scholar
  85. 85.
    Tanaka K., Ito A., Kobayashi T., Kawamura T., Shimada S., Matsumoto K., et al. Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. Journal of bioscience and bioengineering 2005 100(1):112–115. doi:10.1263/jbb.100.112 CrossRefPubMedGoogle Scholar
  86. 86.
    Thannickal V. J., Fanburg B. L. Reactive oxygen species in cell signaling. American journal of physiology 2000;279(6):L1005–1028Google Scholar
  87. 87.
    Vu T. Q., Maddipati R., Blute T. A., Nehilla B. J., Nusblat L., Desai T. A. Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett 2005;5(4):603–607. doi:10.1021/nl047977c CrossRefPubMedGoogle Scholar
  88. 88.
    Wang D., He J., Rosenzweig N., Rosenzweig Z. Superparamagnetic Fe2O3 Beads-CdSe/ZnS Quantum Dots Core–Shell Nanocomposite Particles for Cell Separation. Nano Lett 2004;4(3):409–413. doi:10.1021/nl035010n CrossRefGoogle Scholar
  89. 89.
    Wu W., He Q., Chen H., Tang J., Nie L. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles. Nanotechnology 2007;18:145609–145617. doi:10.1088/0957-4484/18/14/145609 CrossRefGoogle Scholar
  90. 90.
    Xiang J.-J., Tang J.-Q., Zhu S.-G., Nie X.-M., Lu H.-B., Shen S.-R., et al. IONP-PPL: a non-viral vector for efficient gene delivery. The Journal of Gene Medicine 2003;5:803–817. doi:10.1002/jgm.419 CrossRefPubMedGoogle Scholar
  91. 91.
    Yan S., Zhang D., Gu N., Zheng J., Ding A., Wang Z., et al. Therapeutic effect of Fe2O3 nanoparticles combined with magnetic fluid hyperthermia on cultured liver cancer cells and xenograft liver cancers. J Nanosci Nanotechnol 2005;5(8):1185–1192. doi:10.1166/jnn.2005.219 CrossRefPubMedGoogle Scholar
  92. 92.
    Yigit MV, Mazumdar D, Kim HK, Lee JH, Odintsov B, Lu Y. Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 2007;8(14):1675–1678. doi:10.1002/cbic.200700323 CrossRefPubMedGoogle Scholar
  93. 93.
    Yin H., Too H. P., Chow G. M. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 2005 26:5818–5826. doi:10.1016/j.biomaterials.2005.02.036 CrossRefPubMedGoogle Scholar
  94. 94.
    Young-wook J., Huh Y.-M., Cho J.-S., Lee J.-H., Song H.-T., Kim S., et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 2005 127:5732–5733. doi:10.1021/ja0422155 CrossRefGoogle Scholar
  95. 95.
    Yu, C., J. Zhao, Y. Guo, C. Lu, X. Ma, Z. Gu. A novel method to prepare water-dispersible magnetic nanoparticles and their biomedical applications: magnetic capture probe and specific cellular uptake. J. Biomed. Mater. Res. A 87A(2):364–372, 2008.Google Scholar
  96. 96.
    Zhang Y., Chen J., Zhang B., Pan Y., Ren L., Zhao J., et al. Polybutylcyanoacrylate nanoparticles as novel vectors in cancer gene therapy. Nanomedicine 2007 3(2):144–153PubMedGoogle Scholar
  97. 97.
    Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, et al. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 2006;6(4):800–808. doi:10.1021/nl0603350 CrossRefPubMedGoogle Scholar
  98. 98.
    Zhang Y., Sun C., Kohler N., Zhang M. Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular intake. Biomedical Microdevices 2004 6(1):33–40. doi:10.1023/B:BMMD.0000013363.77466.63 CrossRefPubMedGoogle Scholar
  99. 99.
    Zhou M., Nakatani E., Gronenberg L. S., Tokimoto T., Wirth M. J., Hruby V. J., et al. Peptide-labeled quantum dots for imaging GPCRs in whole cells and as single molecules. Bioconjug. Chem. 2007;18(2):323–332. doi:10.1021/bc0601929 CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • E. Haglund
    • 1
  • M.-M. Seale-Goldsmith
    • 1
  • J. F. Leary
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of Basic Medical SciencesPurdue UniversityWest LafayetteUSA
  3. 3.Bindley Bioscience CenterPurdue UniversityWest LafayetteUSA
  4. 4.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  5. 5.Oncological Sciences CenterPurdue UniversityWest LafayetteUSA
  6. 6.Purdue Cancer CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations