Advertisement

Annals of Biomedical Engineering

, Volume 37, Issue 3, pp 625–642 | Cite as

A Computational Study of the Effect of False Vocal Folds on Glottal Flow and Vocal Fold Vibration During Phonation

  • Xudong Zheng
  • Steve Bielamowicz
  • Haoxiang Luo
  • Rajat MittalEmail author
Article

Abstract

The false vocal folds are believed to be components of the acoustic filter that is responsible for shaping the voice. However, the effects of false vocal folds on the vocal fold vibration and the glottal aerodynamic during phonation remain unclear. This effect has implications for computational modeling of phonation as well as for understanding laryngeal pathologies such as glottal incompetence resulting from unilateral vocal fold paralysis. In this study, a high fidelity, two-dimensional computational model, which combines an immersed boundary method for the airflow and a continuum, finite-element method for the vocal folds, is used to examine the effect of the false vocal folds on flow-induced vibration (FIV) of the true vocal folds and the dynamics of the glottal jet. The model is notionally based on a laryngeal CT scan and employs realistic flow conditions and tissue properties. Results show that the false vocal folds potentially have a significant impact on phonation. The false vocal folds reduce the glottal flow impedance and increase the amplitude as well as the mean glottal jet velocity. The false vocal folds also enhance the intensity of the monopole acoustic sources in the glottis. A mechanism for reduction in flow impedance due to the false vocal folds is proposed.

Keywords

False vocal fold Phonation Coanda effects Immersed boundary method 

Notes

Acknowledgments

The project described was supported by Grant Number ROlDC007125 from the National Institute on Deafness and Other Communication Disorders (NIDCD). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDCD or the NIH.

References

  1. 1.
    Agarwal, M., R. Scherer, and K. D. Witt. Effects of false vocal fold width on translaryngeal flow resistance. In: Proceedings of the International Conference on Voice Physiology and Biomechanics: Modeling Complexity, Marseille, France, August 2004.Google Scholar
  2. 2.
    Alipour F., D. A. Berry, I. R. Titze. A finite-element model of vocal-fold vibratin. J. Acoust. Soc. Am. 108:3003–3012, 2000. doi: 10.1121/1.1324678 PubMedCrossRefGoogle Scholar
  3. 3.
    Alipour F., C. Fan, R. C. Scherer. A numerical simulation of laryngeal flow in a forced-oscillation glottal model. Comput. Speech and Language, 10:75–93, 1996. doi: 10.1006/csla.1996.0005 CrossRefGoogle Scholar
  4. 4.
    Alipour F., S. Jaiswal, E. Finnegan. Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models. Annuals of Otology, Rhinology & Laryngology 116(2):135–144, 2007PubMedGoogle Scholar
  5. 5.
    Arnold GE, S. Pinto. Ventricular dysphonia: new interpretation of an old observation. Laryngoscope 70:1608–1627, 1960. doi: 10.1288/00005537-196012000-00003 PubMedCrossRefGoogle Scholar
  6. 6.
    Belyschko T., W. Liu, B. Moran. Nonlinear Finite Elements for Consttinua and Structures, 1st ed., JOHN WILEY and SONS LTD, New York, 2000Google Scholar
  7. 7.
    Berg J. V. D., J. T. Zantema, P. Doornenbal. On the air resistance and the Bernoulli effect of the human larynx. J. Acoust. Soc. Am. 29:626–631, 1952. doi: 10.1121/1.1908987 CrossRefGoogle Scholar
  8. 8.
    Chorin, A. J. Numerical solution of the Naiver-Stokes equations Math. Comput. 22:765–742, 1968. doi: 10.2307/2004575 CrossRefGoogle Scholar
  9. 9.
    Duncan G., G. Zhai, R. Scherer, Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods. J. Acoust. Soc. Am. 120(5):2859–2871, 2006. doi: 10.1121/1.2354069 PubMedCrossRefGoogle Scholar
  10. 10.
    Erath B. D, M. W. Plesniak. An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract. Experiments in Fluids, 40:683–696, 2006. doi: 10.1007/s00348-006-0106-0 CrossRefGoogle Scholar
  11. 11.
    Everstine, G. C., The Bandit computer program for the reduction of matrix bandwidth for Nastran Technical Report 3827, David Taylor Naval Ship R&D Center, Bethesda MD, 1972Google Scholar
  12. 12.
    Flanagan J. L., L. L. Landgraf, Self-Oscillating source for vocal-tract synthesizers”. IEEE Transactions on Audio and Electroacoustics, 16(1):57–64. 1968, doi: 10.1109/TAU.1968.1161949 CrossRefGoogle Scholar
  13. 13.
    Fung Y. C. Biomechanics. 2nd ed. Springer-Verlag, New York, 1993Google Scholar
  14. 14.
    Furmanik F., J. Szczepinska, R. Biegaj. Relation of some dimensions of the middle part of the laryngeal cavity to span of the greater horns of the hyoid bone. Flolia Morphologica, 35(2):123–131, 1976Google Scholar
  15. 15.
    Guo C., R. C. Scherer. Finite element simulation of glottal flow and pressure. J. Acoust. Soc. Am. 94(2):688–700, 1994. doi: 10.1121/1.406886 CrossRefGoogle Scholar
  16. 16.
    Hofmans G. C., G. Groot, M. Ranucci, G. Graziani, A. Hirschberg. Unsteady flow through in-vitro models of the glottis. J. Acoust. Soc. Am. 113(3):1659–1675, 2003. doi: 10.1121/1.1547459 CrossRefGoogle Scholar
  17. 17.
    Ishizaka K., J. L. Flanagan. Synthesis of voiced sound from a two mass model of the vocal cords. Bell System Tech. J. 51:1233–1268, 1972Google Scholar
  18. 18.
    Jiang J. J, C. Tao. The minimum glottal airflow to initiate vocal fold oscillation. J. Acoust. Soc. Am. 121(5):2973–2881, 2007. doi: 10.1121/1.2710961 CrossRefGoogle Scholar
  19. 19.
    Jiang J. J, Y. Zhang. Chaotic vibration induced by turbulent noise in a two-mass model of vocal folds. J. Acoust. Soc. Am. 112(5):2127–2138, 2002. doi: 10.1121/1.1509430 PubMedCrossRefGoogle Scholar
  20. 20.
    Jiang J. J, Y. Zhang, J. Stern. Modeling of chaotic vibrations in symmetric vocal folds. J. Acoust. Soc. Am. 110(4):2120–2128, 2001. doi: 10.1121/1.1395596 PubMedCrossRefGoogle Scholar
  21. 21.
    Kucinschi B. R., R. C. Scherer, K. J. DeWitt, T. T. M. Ng. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx. J Biomech Eng 128:1–11, 2006. doi: 10.1115/1.2146001 CrossRefGoogle Scholar
  22. 22.
    Lamar M. D, Y. Qi, J. Xin. Modeling vocal fold motion with a hydrodynamic semicontinuum model. J. Acoust. Soc. Am. 114(1), 455–464:2003. doi: 10.1121/1.1577547 PubMedCrossRefGoogle Scholar
  23. 23.
    Leeper H., H. Heenemann, C. Reynolds. Vocal function following vertical hemilaryngectomy: a preliminary investigation. J Otolaryngol 19:62–67, 1990PubMedGoogle Scholar
  24. 24.
    Luo, H., R. Mittal, X. Zheng, S. A. Bielamowicz, R. J. Walsh, and J. K. Hahn. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation. J. Comput. Phys. 2008 (in press).Google Scholar
  25. 25.
    Maceri D. R., H. B. Lampe, K. H. Makielski, P. P. Passamani, C. J. Krause. Conservation laryngeal surgery. A critical analysis. Arch Otolaryngol 111:361–365, 1985PubMedGoogle Scholar
  26. 26.
    Maryn Y., M. D. Bodt, P. Van Cauwenberge. Ventricular dysphonia: clinical aspects and therapeutical options. Laryngoscope 113:859–866, 2003. doi: 10.1097/00005537-200305000-00016 PubMedCrossRefGoogle Scholar
  27. 27.
    Mittal R., H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, A. V. Loebbecke. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Physics. 227(10):4825–4852, 2008. doi: 10.1016/j.jcp.2008.01.028 CrossRefGoogle Scholar
  28. 28.
    Mittal R., G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech. 37:239–261, 2005. doi: 10.1146/annurev.fluid.37.061903.175743 CrossRefGoogle Scholar
  29. 29.
    Neubauer J., Z. Zhang. Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds. J. Acoust. Soc. Am. 121:1102–1110, 2007. doi: 10.1121/1.2409488 PubMedCrossRefGoogle Scholar
  30. 30.
    Pelorson X., A. Hirschberg, R. V. Hassel, A. P. J. Wijnands, Y. Auregen. Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation, application to a modified two-mass model. J. Acoust. Soc. Am. 96(6):3416–3431, 1994. doi: 10.1121/1.411449 CrossRefGoogle Scholar
  31. 31.
    Peskin, C. Flow pattern around heart valves: a digit computer method for solving equations of motion. Ph.D. thesis, Albert Einstein College of Medicine, 1972.Google Scholar
  32. 32.
    Pinho S., P. Pontes, M. Gadelha, N. Biasi. Vestibular vocal fold behavior during phonation in unilateral vocal fold paralysis. J Voice 13:36–42, 1999. doi: 10.1016/S0892-1997(99)80059-9 PubMedCrossRefGoogle Scholar
  33. 33.
    Robert, D. C. Concepts and Applications of Finite Element Analysis, 1st ed. JOHN WILEY and SONS LTD, New York, 1974Google Scholar
  34. 34.
    Rosa M. O., J. C. Pereira. A contribution to simulating a three-dimensional larynx model using the finite element method. J. Acoust. Soc. Am. 114:2893–2905, 2003. doi: 10.1121/1.1619981 CrossRefGoogle Scholar
  35. 35.
    Sakakibara, K. I., M. Kimura, H. Imagawa, S. Niimi, and N. Tayama. Physiological study of the supraglottal structures. In: Proceedings of the International Conference on Voice Physiology and Biomechanics, Marseille, France, August 2004.Google Scholar
  36. 36.
    Scherer, R. C. Laryngeal fluid mechanics: steady flow considerations using static models. Doctoral thesis, University of Iowa, Iowa, 1981.Google Scholar
  37. 37.
    Scherer, R. C., V. J. Vail, and B. Rockwell. Examination of laryngeal adduction measure EGGW. Producing speech: contemporary Issues. American Institute of Physics 269–290, 1995.Google Scholar
  38. 38.
    Shadle, C. H., A. M. Barney, and D. W. Thomas. An investigation into the acoustics and aerodynamics of the larynx. In: Vocal Fold Physiology: Acoustic, Perceptual and Physiological Aspects of Voice Mechanisms, edited by J. Gauffin and B. Hammarberg. Singular Publishing Co., 1991, pp. 73–82.Google Scholar
  39. 39.
    Stager S. V., S. Bielamowicz, A. Gupta, S. Marullo, J. R. Regnell, J. Barkmeier. Quantification of static and dynamic supraglottic activity. J Speech Lang Hear Res. 44:1245–1256, 2001. doi: 10.1044/1092-4388(2001/097) PubMedCrossRefGoogle Scholar
  40. 40.
    Story B. H., I. R. Titze. Voice simulation with a body-cover model of the vocal folds. J. Acoust. Soc. Am. 97(2):1249–1260. 1995, doi: 10.1121/1.412234 PubMedCrossRefGoogle Scholar
  41. 41.
    Tao C., J. J. Jiang. The phonation critical condition in rectangular glottis with wide prephonatory gaps. J. Acoust. Soc. Am. 123(3):1637–1641, 2008. doi: 10.1121/1.2832328 PubMedCrossRefGoogle Scholar
  42. 42.
    Tao C., Y. Zhang, D. G. Hottinger, J. J. Jiang. Asymmetric airflow and vibration induced by the coanda effect in a symmetric of the vocal folds. J. Acoust. Soc. Am. 122(4):2270–2278, 2007. doi: 10.1121/1.2773960 PubMedCrossRefGoogle Scholar
  43. 43.
    Titze, I. R. The human vocal cords: A mathematical model part I. phonetica 28:129–170, 1973PubMedCrossRefGoogle Scholar
  44. 44.
    Triep M., Ch. Brucker, W. Schroder. High-speed PIV measurements of the flow downstream of a dynamic mechanical of the human vocal folds. Experiments in Fluids. 39:232–245, 2005. doi: 10.1007/s00348-005-1015-3 CrossRefGoogle Scholar
  45. 45.
    Von Doersten P., K. Izdebski, J. Ross, R. Cruz. Ventricular dysphonia: a profile of 40 cases. Laryngoscope 102:1296–1301, 1992. doi: 10.1288/00005537-199211000-00018 CrossRefGoogle Scholar
  46. 46.
    White, F. M. Viscous Fluid Flow, 2nd ed. McGraw-Hill, Inc., New York, 1992Google Scholar
  47. 47.
    Zemilin, W. R. Speech and hearing science anatomy and physiology, 3rd ed. Prentice hall, Englewood Cliffs, NJ, 1988Google Scholar
  48. 48.
    Zhang C., W. Zhao, S. H. Frankel, L. Mongeau. Computational aeroacoustics of phonation, part II: effects of flow parameters and ventricular folds. J. Acoust. Soc. Am. 112:2147–2154, 2002. doi: 10.1121/1.1506694 PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang Z., J. Neubauer, D. A. Berry. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation. J. Acoust. Soc. Am. 122(4):2279–2296, 2007. doi: 10.1121/1.2773949 PubMedCrossRefGoogle Scholar
  50. 50.
    Zhao W., C. Zheng, S. H. Frankel, L. Mongeau. Computational aeroacoustics of phonation, part I: computational methods and sound generation mechanisms. J. Acoust. Soc. Am. 112:2134–2146, 2002. doi: 10.1121/1.1506693 PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Xudong Zheng
    • 1
  • Steve Bielamowicz
    • 2
  • Haoxiang Luo
    • 3
  • Rajat Mittal
    • 1
    Email author
  1. 1.Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonUSA
  2. 2.Division of OtolaryngologyThe George Washington UniversityWashingtonUSA
  3. 3.Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations