Annals of Biomedical Engineering

, Volume 37, Issue 3, pp 503–515 | Cite as

MRI-Based CFD Analysis of Flow in a Human Left Ventricle: Methodology and Application to a Healthy Heart

  • Torsten SchenkelEmail author
  • Mauro Malve
  • Michael Reik
  • Michael Markl
  • Bernd Jung
  • Herbert Oertel


A three-dimensional computational fluid dynamics (CFD) method has been developed to simulate the flow in a pumping left ventricle. The proposed method uses magnetic resonance imaging (MRI) technology to provide a patient specific, time dependent geometry of the ventricle to be simulated. Standard clinical imaging procedures were used in this study. A two-dimensional time-dependent orifice representation of the heart valves was used. The location and size of the valves is estimated based on additional long axis images through the valves. A semi-automatic grid generator was created to generate the calculation grid. Since the time resolution of the MR scans does not fit the requirements of the CFD calculations a third order bezier approximation scheme was developed to realize a smooth wall boundary and grid movement. The calculation was performed by a Navier–Stokes solver using the arbitrary Lagrange–Euler (ALE) formulation. Results show that during diastole, blood flow through the mitral valve forms an asymmetric jet, leading to an asymmetric development of the initial vortex ring. These flow features are in reasonable agreement with in vivo measurements but also show an extremely high sensitivity to the boundary conditions imposed at the inflow. Changes in the atrial representation severely alter the resulting flow field. These shortcomings will have to be addressed in further studies, possibly by inclusion of the real atrial geometry, and imply additional requirements for the clinical imaging processes.


Patient specific Modeling MRI Computational fluid dynamics In vivo MRI flux Magnetic resonance imaging Ventricle Blood flow simulation 



The authors wish to thank all undergraduate, graduate and Ph.D. students that helped in developing the KaHMo. Especially we wish to thank Kathrin Spiegel who greatly simplified the tedious task of grid generation and Ron Schwarz from Fraunhofer FIT for the segmentation work.


  1. 1.
    Atkinson, D. J. and R. R. Edelman. Cineangiography of the heart in a single breath hold with a segmented turboflash sequence. Radiology 178:357–360, 1991.PubMedGoogle Scholar
  2. 2.
    Axel, L. Blood flow effects in magnetic resonance imaging. Am J Roentgenol 143(6):1157–1166, 1984.Google Scholar
  3. 3.
    Baccani, B., F. Domenichini, and Pedrizzetti. Vortex dynamics in a model left ventricle during filling. Eur. J. Mech. B/Fluids 21:527–543, 2002.CrossRefGoogle Scholar
  4. 4.
    Baccani, B., F. Domenichini, and Pedrizzetti. Model and influence of mitral valve opening during the left ventricular filling. J. Biomech. 36:355–361, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Baccani, B., F. Domenichini, G. Pedrizzetti, and G. Tonti. Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J. Biomech. 35(5):665–671, 2002.PubMedCrossRefGoogle Scholar
  6. 6.
    Bolzon, G., L. Zovatto, and G. Pedrizzetti. Birth of three-dimensionality in a pulsed jet through a circular orifice. J. Fluid. Mech. 493:209–218, 2003.CrossRefGoogle Scholar
  7. 7.
    Chahboune, B. and J. M. Crolet. Numerical simulation of the blood-wall interaction in the human left ventricle. Eur. Phys. J.-Appl. Phys. 2:291–297, 1998.CrossRefGoogle Scholar
  8. 8.
    Cheng, Y., H. Oertel, and T. Schenkel. Fluid–structure coupled cfd simulation of the left ventricular flow during filling phase. Ann. Biomed. Eng. 33(5):567–576, 2004.CrossRefGoogle Scholar
  9. 9.
    Domenichini, F., G. Pedrizzetti, and B. Baccani. Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539:179–198, 2005.CrossRefGoogle Scholar
  10. 10.
    Ebbers, T, L. Wigstrï, A. F. Bolger, B. Wranne, M. Karlsson. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J. Biomech. Eng. 124:288–293, 2002.PubMedCrossRefGoogle Scholar
  11. 11.
    Ferziger, J. and M. Peric. Computational Methods for Fluid Dynamics. Berlin: Springer, 1997.Google Scholar
  12. 12.
    Geiger, D., A. Gupta, L. A. Costa, and J. Vlontzos. Dynamic programming for detection, tracking and matching deformable contours. IEEE Trans. PAMI 17(3):294–302, 1995.Google Scholar
  13. 13.
    Hennig, J. K-space sampling strategies. Eur Radiol 9:1020–1031, 1999.PubMedCrossRefGoogle Scholar
  14. 14.
    Hunter P. J., A. J. Pullan, B. H. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5:147–177, 2003.PubMedCrossRefGoogle Scholar
  15. 15.
    Jolly, M.-P. Combining edge, region and shape information to segment the left ventricle in cardiac mr images. In: MICCAI, 2001, pp. 482–490.Google Scholar
  16. 16.
    Kilner, P. J., G.-Z. Yang, A. J. Wilkes, M. R. H., D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.PubMedCrossRefGoogle Scholar
  17. 17.
    Kim, W. Y., P. G. Walker, E. M. Pedersen, J. K. Poulsen, S. Oyre, K. Houlind, and A. P. Yoganathan. Left ventricular blood flow patterns in normal subjects: A quantitative analysis by three-dimensional magnetic resonance velocity mapping. JACC 26(1):224–238, 1995.PubMedGoogle Scholar
  18. 18.
    Lemmon, J. D. and A. P. Yoganathan. Computational modeling of left herat diastolic function: Examination of ventricluar dysfunction. J. Biomech. Eng. 122:297–303, 2000.PubMedCrossRefGoogle Scholar
  19. 19.
    Lemmon, J. D. and A. P. Yoganathan. Three-dimensional computational model of left heart diastolic function with fluid–structure interaction. J. Biomech. Eng. 122:109–117, 2000.PubMedCrossRefGoogle Scholar
  20. 20.
    Lima, J. A. and M. Y. Desai. Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 44(6):1164–1171, 2004.PubMedCrossRefGoogle Scholar
  21. 21.
    Long, Q., R. Merrifield, G. Z. Yang, X. Y. Xu, P. J. Kilner, and D. N. Firmin. The influence of inflow boundary conditions on intra left ventricle flow predictions. J. Biomech. Eng. 125:922–927, 2003.PubMedCrossRefGoogle Scholar
  22. 22.
    Lorenz, C. H., E. S. Walker, V. L. Morgan, S. S. Klein, and T. P. Graham jr. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance 1:7–21, 1999.PubMedCrossRefGoogle Scholar
  23. 23.
    McQueen, D. M. and C. Peskin. Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J. Supercomput. 11(3):213–236, 1997.CrossRefGoogle Scholar
  24. 24.
    McQueen D. M., C. Peskin. A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Comput. Graph. 34:56–60, 2000.Google Scholar
  25. 25.
    Mortensen, E. N., W. A. Barrett. Interactive segmentation with intelligent scissors. Graphical Models and Image Processing 60(5):349–384, 1998.CrossRefGoogle Scholar
  26. 26.
    Nakamura, M., S. Wada, T. Mikami, A. Kitabatake, and T. Karino. Computational study on the evolution of an intraventricular vortical flow during early diastole for the interpretation of color m-mode doppler echocardiogramms. Biomech. Model. Mechanobiol. 2:59–72, 2003.PubMedCrossRefGoogle Scholar
  27. 27.
    Nash, M. P. and P. J. Hunter. Computational mechanics of the heart: From tissue structure to ventricular function. J. Elast. 61(1/3):113–141, 2000.CrossRefGoogle Scholar
  28. 28.
    Naujokat, E., and U. Kiencke. Neuronal and hormonal cardiac control processes in a model of the human circulatory system. Int. J. Bioelectromagn. 2(2), 2000.Google Scholar
  29. 29.
    Noble, D. Modelling the heart: from genes to cells to the whole organ. Science 295:1678–1682, 2002.PubMedCrossRefGoogle Scholar
  30. 30.
    Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101, 2005.Google Scholar
  31. 31.
    Pelc, N. J., R. J. Herfkens, A. Shimakawa, and D. R. Enzmann. Phase contrast cine magnetic resonance imaging. Magn Reson Q 7(4):229–254, 1991.PubMedCrossRefGoogle Scholar
  32. 32.
    Perktold, K., M. Prosi, and H. Florian. Computational models of arterial flow and mass transport. CISM Courses and Lectures (446):73–136, 2003.Google Scholar
  33. 33.
    Peskin, C. S., and D. M. McQueen. Fluid dynamics of the heart and its valves, case studies in mathematical modeling, In: Ecology, Physiology and Cell Biology. New Jersey: Pretice-Hall, 1996, pp. 309–337.Google Scholar
  34. 34.
    Rebergen, S. A., E. E. van der Wall, J. Doornbos, and A. de Roos. Magnetic resonance measurement of velocity and flow: technique, validation, and cardiovascular applications. Am Heart J 126(6):1439–1456, 1993.PubMedCrossRefGoogle Scholar
  35. 35.
    Saber, N. R., A. D. Gosman, N. B. Wood, P. J. Kilner, C. L. Charrier, and D. N. Firmin. Computational flow modeling of the left ventricle based on in vivo mri data: Initial experience. Ann. Biomed. Eng. 29(4):275–283, 2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Saber, N. R., N. B. Wood, A. D. Gosman, R. D. Merrifield, G. Z. Yang, C. L. Charrier, P. D. Gatehouse, and D. N. Firmin. Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Ann. Biomed. Eng. 31(1):42–52, 2003.PubMedCrossRefGoogle Scholar
  37. 37.
    Schenk, A., G. Prause, and H. Peitgen. Local cost computation for efficient segmentation of 3d objects with live wire. In: Proceedings of SPIE, edited by M. Sonka and K. M. Hanson. SPIE, Vol. 4322, 2001, pp. 1357–1364.Google Scholar
  38. 38.
    Schoephoerster, R. T., C. L. Silva, and G. Ray. Evaluation of ventricular function based on simulated systolic flow dynamics computed from regional wall motion. J. Biomech. 27:125–136, 1994.PubMedCrossRefGoogle Scholar
  39. 39.
    Stalling, D., and H.-C. Hege. Intelligent scissors for medical image segmentation. In: Tagungsband zum 4. Freiburger Workshop: Digitale Bildverarbeitung in der Medizin, edited by B. Arnolds, H. Mueller, T. Saupe, and D. Tolxdorf, 1996, pp. 32–36.Google Scholar
  40. 40.
    Taylor, T. W., H. Okino, and T. Yamaguchi. Three-dimensional analysis of left ventricular ejection using computational dynamics. J. Biomech. Eng. 116:127–130, 1994.Google Scholar
  41. 41.
    Vesier, C., J. D. Lemmon, R. A. Levine, and A. P. Yoganathan. A three-dimensional computational model of a thin-walled left ventricle. In: Proceedings on IEEE Supercomputing ’92, 16–20 November, 1992, pp. 73–82.Google Scholar
  42. 42.
    Vierendeels, J. A., K. Riemslagh, and E. Dick. Computer simulation of intraventricular flow and pressure gradients during diastole. J. Biomech. Eng. 122:667–674, 2000.PubMedCrossRefGoogle Scholar
  43. 43.
    Vierendeels, J. A., K. Riemslagh, E. Dick, and P. Verdonck. Computer simulation of left ventricular filling flow. Comput. Cardiol. 26:177–180, 1999.Google Scholar
  44. 44.
    Watanabe, H., T. Hisada, S. Sugiura, J. Okada, and H. Fukunari. Computer simulation of blood flow, left ventricular wall motion and their interrelationship by fluid–structure interaction finite element method. JSME Int. J. Ser. C- Mech. Syst. Mach. Elem. Manufact. 45(4):1003–1012, 2002.Google Scholar
  45. 45.
    Watanabe, H., S. Sugiura, H. Kafuku, and T. Hisada. Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophysical J. 87:2074–2085, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Torsten Schenkel
    • 1
    Email author
  • Mauro Malve
    • 1
  • Michael Reik
    • 1
  • Michael Markl
    • 2
  • Bernd Jung
    • 2
  • Herbert Oertel
    • 1
  1. 1.Institute of Fluid MechanicsUniversity of KarlsruheKarlsruheGermany
  2. 2.Department of Diagnostic RadiologyUniversity Hospital FreiburgFreiburgGermany

Personalised recommendations