Annals of Biomedical Engineering

, Volume 37, Issue 1, pp 1–13 | Cite as

On Mitral Valve Dynamics and its Connection to Early Diastolic Flow

Article

Abstract

In the field of cardiology, the current ability to accurately detect diastolic dysfunction is unsatisfactory due to the lack of an effective diagnostic index. Isolated indexes obtained from echocardiography are all restricted to a certain aspect of ventricular diastolic function only, and individually cannot be regarded as a global representative for the left heart diastolic function. Due to complexity of cardiac motion, a reliable measure for diastolic performance should be a parameter that independently correlates with several aspects of cardiac function. The presence of trans-mitral vortex ring and its influence on dynamics of the mitral valve is a topic that has been recently received more attention in cardiovascular research. One obvious reason for this attention is to find better solutions to overcome our inability in interpretation of Doppler mitral inflow patterns for distinguishing a normal trans-mitral flow from a pseudonormal pattern. In the present study, we investigated the relationship among the ventricular early pressure drop, trans-mitral thrust as a force generated during diastolic filling and mitral annulus recoil through the index of vortex formation time. As a result, we found that vortex formation time is independently correlated to trans-mitral thrust, minimal ventricular pressure and pressure drop time-constant of isovolumic relaxation phase. Results also showed that trans-mitral thrust is maximized when the non-dimensional vortex formation time is in the range of 4 and 5.5 regardless of the shape of the waveform or the value of the pressure drop time-constant. In conclusion, this study confirms that vortex formation time, a non-dimensional measure for duration of E-wave, can be used as an index to assess diastolic ventricular function.

Keywords

Vortex formation time Left ventricle Trans-mitral thrust Mitral annulus recoil 

References

  1. 1.
    Alam M., Höglund C. Assessment by echocardiogram of left ventricular diastolic function in healthy subjects using the atrioventricular plane displacement. Am. J. Cardiol. 1992; 69:505–565Google Scholar
  2. 2.
    Baccani B., Domenichini F., Pedrizzetti G., Tonti G. Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J. Biomech. 2002; 35(5):665–671. doi:10.1016/S0021-9290(02)00005-2 PubMedCrossRefGoogle Scholar
  3. 3.
    Bruch C., Schmermund A., Bartel T., Schaar J., Erbel R.. Tissue Doppler imaging: a new technique for assessment of pseudonormalization of the mitral inflow pattern. Echocardiography 2000; 17(6 Pt 1):539–546. doi:10.1046/j.1540-8175.2000.00539.x PubMedCrossRefGoogle Scholar
  4. 4.
    Dabiri J. O., Gharib M.. Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 2005; 538: 111–136. doi:10.1017/S002211200500515X CrossRefGoogle Scholar
  5. 5.
    Dincer I., Kumbasar D., Nergisoglu G., Atmaca Y., Kutlay S., Akyurek O., Sayin T., Erol C., Oral D. Assessment of left ventricular diastolic function with Doppler tissue imaging: effects of preload and place of measurements. Int. J. Cardiovasc. Imaging 2002; 18(3):155–160PubMedCrossRefGoogle Scholar
  6. 6.
    Dong S. J., Hees P. S., Siu C. O., Weiss J. L., Shapiro E. P. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am. J. Physiol. Heart Circ. Physiol. 2001; 281(5):H2002–H2009PubMedGoogle Scholar
  7. 7.
    Firstenberg M. S., Greenberg N. L., Main M. L., Drinko J. K., Odabashian J. A., Thomas J. D., Garcia M. J. Determinants of diastolic myocardial tissue Doppler velocities: influences of relaxation and preload. J. Appl. Physiol. 2001; 90(1): 299–307PubMedGoogle Scholar
  8. 8.
    Fukuda K., Oki T., Tabata T., Luchi A., Ito S.. Regional left ventricular wall motion abnormalities in myocardial infarction and mitral annular descent velocities studied with pulsed tissue Doppler imaging. J. Am. Soc. Echocardiogr. 1998; 11(9):841–848. doi:10.1016/S0894-7317(98)70003-3 PubMedCrossRefGoogle Scholar
  9. 9.
    Galiuto L., Ignone G., DeMaria A. N. Contraction and relaxation velocities of the normal left ventricle using pulsed-wave tissue Doppler echocardiography. Am. J. Cardiol. 1998; 81:609–614. doi:10.1016/S0002-9149(97)00990-9 PubMedCrossRefGoogle Scholar
  10. 10.
    Garcia M. J., Thomas J. D. Tissue Doppler to assess diastolic left ventricular function. Echocardiography 1999; 16(5):501–508. doi:10.1111/j.1540-8175.1999.tb00097.x PubMedCrossRefGoogle Scholar
  11. 11.
    Garcia M. J., Thomas J. D., Klein A. L. New Doppler echocardiographic applications for the study of diastolic function. J. Am. Coll. Cardiol. 1998; 32:865–875. doi:10.1016/S0735-1097(98)00345-3 PubMedCrossRefGoogle Scholar
  12. 12.
    Gharib M., Rambod E., Kheradvar A., Sahn D., Dabiri J. O.. A global index for heart failure based on optimal vortex formation in the left ventricle. Proc. Natl. Acad. Sci. USA 2006; 103(16): 6305–6308. doi:10.1073/pnas.0600520103 PubMedCrossRefGoogle Scholar
  13. 13.
    Gharib M., Rambod E., Shariff K. A universal time scale for vortex ring formation. J. Fluid Mech. 1998; 360: 121–140 doi:10.1017/S0022112097008410 CrossRefGoogle Scholar
  14. 14.
    Hasegawa H., Little W. C., Ohno M., Brucks S., Morimoto A., Cheng H. J., Cheng C. P. Diastolic mitral annular velocity during the development of heart failure. J. Am. Coll. Cardiol. 2003; 41:1590–1597 doi:10.1016/S0735-1097(03)00260-2 PubMedCrossRefGoogle Scholar
  15. 15.
    Hung M. J., Cherng W. J., Kuo L. T., Wang C. H., Chern M. S.. Analysis of left atrial volume change rate during left ventricular diastolic phase with M-mode echocardiography for differentiation between normal and pseudonormal mitral inflow. Am. J. Cardiol. 2002; 89(5):552–556 doi:10.1016/S0002-9149(01)02295-0 PubMedCrossRefGoogle Scholar
  16. 16.
    Keren G., Sonnenblick E. H., LeJemtel T. H.. Mitral annulus motion: relation to pulmonary venous and transmitral flows in normal subjects and in patients with dilated cardiomyopathy. Circulation 1988; 78:621PubMedGoogle Scholar
  17. 17.
    Kheradvar, A., R. Assadi, K. R. Jutzy, and R. Bansal. Transmitral vortex formation: a reliable indicator for pseudonormal diastolic dysfunction. J. Am. Coll. Cardiol. 51(10) supplement A: A104, 2008Google Scholar
  18. 18.
    Kheradvar A., Gharib M.. Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation. Ann. Biomed. Eng. 2007; 35(12):2050–2064. doi:10.1007/s10439-007-9382-y PubMedCrossRefGoogle Scholar
  19. 19.
    Kheradvar A., Kasalko J., Johnson D., Gharib M.. An in vitro study of changing profile heights in mitral bioprostheses and their influence on flow. ASAIO J. 2006; 52(1):34–38. doi:10.1097/01.mat.0000191203.09932.8c PubMedCrossRefGoogle Scholar
  20. 20.
    Kheradvar A., Milano M., Gharib M. Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J. 2007; 53(1):8–16. doi:10.1097/01.mat.0000249870.44625.22 PubMedCrossRefGoogle Scholar
  21. 21.
    Kheradvar A., Milano M., Gorman R. C., Gorman J. H. III, Gharib M.. Assessment of left ventricular elastic and viscous components based on ventricular harmonic behavior. Cardiovasc. Eng. 2006; 6(1):30–39. doi:10.1007/s10558-006-9001-9 PubMedCrossRefGoogle Scholar
  22. 22.
    Khouri S. J., Maly G. T., Suh D. D., Walsh T. E.. A practical approach to the echocardiographic evaluation of diastolic function. J. Am. Soc. Echocardiogr. 2004 17(3):290–297. doi:10.1016/j.echo.2003.08.012 PubMedCrossRefGoogle Scholar
  23. 23.
    Kilner P. J., Yang G. Z., Wilkes A. J., Mohiaddin R. H., Firmin D. N., Yacoub M. H. 2000. Asymmetric redirection of flow through the heart. Nature 404:759–761. doi:10.1038/35008075 PubMedCrossRefGoogle Scholar
  24. 24.
    Kranidis A., Kostopoulos K., Anthopoulos L.. Evaluation of left ventricular filling by echocardiographic atrioventricular plane displacement in patients with coronary artery disease. Int. J. Cardiol. 1995; 48:183–186. doi:10.1016/0167-5273(94)02222-5 PubMedCrossRefGoogle Scholar
  25. 25.
    Nagueh S. F., Middleton K. J., Kopelen H. A., Zoghbi W. A., Quinones M. A. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J. Am. Coll. Cardiol. 1997; 30:1527–1533. doi:10.1016/S0735-1097(97)00344-6 PubMedCrossRefGoogle Scholar
  26. 26.
    Nishimura R. A., Tajik A. J. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta stone. J. Am. Coll. Cardiol. 1997; 30:8–18. doi:10.1016/S0735-1097(97)00144-7 PubMedCrossRefGoogle Scholar
  27. 27.
    Ommen S. R., Nishimura R. A., Appleton C. P., Miller F. A., Oh J. K., Redfield M. M., Tajik A. J.. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 2000; 102(15):1788–1794PubMedGoogle Scholar
  28. 28.
    Ormiston J. A., Shah P., Tei C., Wong M. Size and motion of the mitral valve annulus in man. Circulation 1981; 64:113–130PubMedGoogle Scholar
  29. 29.
    Poerner T. C., Goebel B., Unglaub P., Sueselbeck T., Strotmann J. M., Pfleger S., Borggrefe M., Haase K. K. Detection of a pseudonormal mitral inflow pattern: an echocardiographic and tissue Doppler study. Echocardiography 2003; 20(4):345–356. doi:10.1046/j.1540-8175.2003.03040.x PubMedCrossRefGoogle Scholar
  30. 30.
    Poirier P., Bogaty P., Garneau C., Marois L., Dumesnil J. G.. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 2001; 24(1):5–10. doi:10.2337/diacare.24.1.5 PubMedCrossRefGoogle Scholar
  31. 31.
    Rivas-Gotz C., Khoury D. S., Manolios M., Rao L., Kopelen H. A., Nagueh S. F.. Time interval between onset of mitral inflow and onset of early diastolic velocity by tissue Doppler: a novel index of left ventricular relaxation: experimental studies and clinical application. J. Am. Coll. Cardiol. 2003; 42(8):1463–1470. doi:10.1016/S0735-1097(03)01034-9 PubMedCrossRefGoogle Scholar
  32. 32.
    Rowlatt U.. Functional morphology of the heart in mammals. Am. Zool. 1968; 8(2):221–229PubMedGoogle Scholar
  33. 33.
    Sabbah H. N., Stein P. D. Pressure–diameter relations during early diastole in dogs: incompatibility with the concept of passive left ventricular filling. Circ. Res. 1981; 48:357–365PubMedGoogle Scholar
  34. 34.
    Salemi V. M., Picard M. H., Mady C.. Assessment of diastolic function in endomyocardial fibrosis: value of flow propagation velocity. Artif. Organs 2004; 28(4):343–346. doi:10.1111/j.1525-1594.2004.47352.x PubMedCrossRefGoogle Scholar
  35. 35.
    Sohn D. W., Chai I. H., Lee D. J., Kim H. C., et al. Assessment of mitral annulus velocity by Doppler Tissue imaging in the evaluation of left ventricular diastolic function. J. Am. Coll. Cardiol. 1997; 30:474–480. doi:10.1016/S0735-1097(97)88335-0 PubMedCrossRefGoogle Scholar
  36. 36.
    Steine K., Stugaard M., Smiseth O. A. Mechanisms of retarded apical filling in acute ischemic left ventricular failure. Circulation 1999; 99(15):2048–2054PubMedGoogle Scholar
  37. 37.
    Thomas J. D., Weyman A. E. Echocardiographic Doppler evaluation of left ventricular diastolic function: physics and physiology. Circulation 1991; 84(3):977–990PubMedGoogle Scholar
  38. 38.
    Villari B., Hess O. M., Campbell S. E., Vassalli G., Chiariello M., Krayenbuehl H. P. Sex-dependent differences in left ventricular function and structure in chronic pressure overload. Eur. Heart J. 1995; 16:1410–1419PubMedGoogle Scholar
  39. 39.
    Whalley G. A., Walsh H. J., Gamble G. D., Doughty R. N.. Comparison of different methods for detection of diastolic filling abnormalities. J. Am. Soc. Echocardiogr. 2005; 18(7):710–717. doi:10.1016/j.echo.2005.03.038 PubMedCrossRefGoogle Scholar
  40. 40.
    Yellin E. L., Hori M., Yoran C., Sonnenblick E. H., et al. Left ventricular relaxation in the filling and nonfilling intact canine heart. Am. J. Physiol. (Heart Circ. Physiol.) 1986; 250:H620–H629Google Scholar
  41. 41.
    Zile M. R., Brutsaert D. L.. New concepts in diastolic dysfunction and diastolic heart failure: part i diagnosis, prognosis, and measurements of diastolic function. Circulation 2002; 105:1387–1393 doi:10.1161/hc1102.105289 PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA
  2. 2.Cardiovascular and Biofluid Dynamics LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations