Fluid Dynamics of Gas Exchange in High-Frequency Oscillatory Ventilation: In Vitro Investigations in Idealized and Anatomically Realistic Airway Bifurcation Models

  • Kevin B. Heraty
  • John G. Laffey
  • Nathan J. Quinlan


The objective of this work is to develop understanding of the local fluid dynamic mechanisms that underpin gas exchange in high-frequency oscillatory ventilation (HFOV). The flow field during HFOV was investigated experimentally using particle image velocimetry in idealized and realistic models of a single bifurcation. Results show that inspiratory and expiratory fluid streams coexist in the airway at flow reversal, and mixing between them is enhanced by secondary flow and by vortices associated with shear layers. Unsteady flow separation and recirculation occurs in both geometries. The magnitude of secondary flow is greater in the realistic model than in the idealized model, and the structure of secondary flow is quite different. However, other flow structures are qualitatively similar.


Respiratory flow Mechanical ventilation Lung Particle image velocimetry 


  1. 1.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342:1301–1308, 2000. doi:10.1056/NEJM200005043421801 Google Scholar
  2. 2.
    Banvard, R. A. The Visible Human Project image data set from inception to completion and beyond. Proceedings of CODATA 2002: Frontiers of Scientific and Technical Data, Montreal, Canada, 2002Google Scholar
  3. 3.
    Bryan A. C. (2001) The oscillations of HFO. Am. J. Respir. Crit. Care Med. 163:816–817PubMedGoogle Scholar
  4. 4.
    Chang H. K. (1984) Mechanisms of gas transport during ventilation by high-frequency oscillation. J. Appl. Physiol., 56: 553–563PubMedGoogle Scholar
  5. 5.
    Comer J. K., C. Kleinstreuer, Z. Zhang (2001) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J. Fluid Mech. 435:25–54. doi:10.1017/S0022112001003809 Google Scholar
  6. 6.
    Derdak, S., S. Mehta, T. E. Stewart, T. Smith, M. Rogers, T. G. Buchman, B. Carlin, S. Lowson, J. Granton, and the Multicenter Oscillatory Ventilation for Acute Respiratory Distress Syndrome Trial (MOAT) Study Investigators. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am. J. Respir. Crit. Care Med. 166:801–808, 2002. doi:10.1164/rccm.2108052
  7. 7.
    Eckmann D. M., J. B. Grotberg (1988) Oscillatory flow and mass transport in a curved tube. J. Fluid Mech. 188:509–527. doi:10.1017/S0022112088000825 CrossRefGoogle Scholar
  8. 8.
    Fresconi F. E., A. S. Wexler, A. K. Prasad (2003) Expiration flow in a symmetric bifurcation. Exp. Fluids 35: 493–501. doi:10.1007/s00348-003-0713-y CrossRefGoogle Scholar
  9. 9.
    Fujioka H., K. Oka, K. Tanishita (2001) Oscillatory flow and gas transport through a symmetrical bifurcation. J. Biomech. Eng. 123:145–153. doi:10.1115/1.1352735 PubMedCrossRefGoogle Scholar
  10. 10.
    Gerrard J. H., M. D. Hughes (1971) The flow due to an oscillatory piston in a cylindrical tube: a comparison between experiment and a simple entrance flow theory. J. Fluid Mech. 50:97–106. doi:10.1017/S0022112071002477 CrossRefGoogle Scholar
  11. 11.
    Große S., W. Schröder, M. Klaas, A. Klöckner, J. Roggenkamp (2007) Time resolved analysis of steady and oscillating flow in the upper human airways. Exp. Fluids 42: 955–970. doi:10.1007/s00348-007-0318-y CrossRefGoogle Scholar
  12. 12.
    Haselton F. R., P. W. Scherer (1982) Flow visualization of steady streaming in oscillatory flow through a bifurcating tube. J. Fluid Mech. 123:315–333. doi:10.1017/S0022112082003085 CrossRefGoogle Scholar
  13. 13.
    Insight 3GTM Data Acquisition Analysis and Display Software User Guide. Shoreview: TSI Inc., 2006Google Scholar
  14. 14.
    Jan D. L., A. H. Shapiro, R. D. Kamm (1989) Some features of oscillatory flow in a model bifurcation. J. Appl. Physiol. 67:147–159PubMedGoogle Scholar
  15. 15.
    Kelly J. T., A. K. Prasad, A. S. Wexler (2000) Detailed flow patterns in the nasal cavity. J. Appl. Physiol. 89:323–337PubMedGoogle Scholar
  16. 16.
    Krishnan J. A., R. G. Brower (2000) High frequency ventilation for acute lung injury and ARDS. Chest 118:795–807. doi:10.1378/chest.118.3.795 PubMedCrossRefGoogle Scholar
  17. 17.
    Lieber B. B., Y. Zhao (1998) Oscillatory flow in a symmetric bifurcation airway model. Ann. Biomed. Eng. 26:821–830. doi:10.1114/1.128 PubMedCrossRefGoogle Scholar
  18. 18.
    Marchak B. E., W. K. Thompson, P. Duffty, T. Miyaki, M. H. Bryan, A. C. Bryan, A. B. Froese (1981) Treatment of RDS by high-frequency oscillatory ventilation: a preliminary report. J. Pediatr. 99:287–292. doi:10.1016/S0022-3476(81)80480-5 PubMedCrossRefGoogle Scholar
  19. 19.
    Mehta S., J. Granton, R. J. MacDonald, D. Bowman, A. Matte-Martyn, T. Bachman, T. Smith, T. E. Stewart (2004) High-frequency oscillatory ventilation in adults: the Toronto experience. Chest 126:518–527. doi:10.1378/chest.126.2.518 PubMedCrossRefGoogle Scholar
  20. 20.
    Moganasundram S., A. Durward, S. M. Tibby, I. A. Murdoch (2002) High-frequency oscillation in adolescents. Br. J. Anaesth. 88:708–711. doi:10.1093/bja/88.5.708 PubMedCrossRefGoogle Scholar
  21. 21.
    Nishida M., Y. Inaba, K. Tanishita (1997) Gas dispersion in a model pulmonary bifurcation during oscillatory flow. J. Biomech. Eng. 119:309–316. doi:10.1115/1.2796095 PubMedCrossRefGoogle Scholar
  22. 22.
    Nowak N., P. P. Kakade, A. V. Annapragada (2003) Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31:374–390. doi:10.1114/1.1560632 PubMedCrossRefGoogle Scholar
  23. 23.
    Olson, D. E. Fluid mechanics relevant to respiration—flow within curved or elliptical tubes and bifurcating systems. Ph.D. Thesis, London University, London, 1971Google Scholar
  24. 24.
    Peattie R. A., W. Schwarz (1998) Experimental investigation of oscillatory flow through a symmetrically bifurcating tube. J. Biomech. Eng. 120:584–593. doi:10.1115/1.2834748 PubMedCrossRefGoogle Scholar
  25. 25.
    Raffel, M., C. Willert, and J. Kompenhans. Particle Image Velocimetry: A Practical Guide. Berlin: Springer-Verlag, 1998Google Scholar
  26. 26.
    Ramuzat, A., and M. L. Riethmuller. PIV investigation of oscillating flows within a 3D lung multiple bifurcations model. 11th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2002Google Scholar
  27. 27.
    Rimensberger P. C., M. Beghetti, S. Hanquinet, M. Berner (2000) First intention high-frequency oscillation with early lung volume optimization improves pulmonary outcome in very low birth weight infants with respiratory distress syndrome. Pediatrics 105:1202–1208. doi:10.1542/peds.105.6.1202 PubMedCrossRefGoogle Scholar
  28. 28.
    Rubenfeld G. D. (2003) Epidemiology of acute lung injury. Crit. Care Med. 31:S276–284. doi:10.1097/01.CCM.0000057904.62683.2B PubMedCrossRefGoogle Scholar
  29. 29.
    Schroter R. C., M. F. Sudlow (1969) Flow patterns in models of the human bronchial airways. Respir. Physiol. 7:341–355. doi:10.1016/0034-5687(69)90018-8 PubMedCrossRefGoogle Scholar
  30. 30.
    Tanaka G., T. Ogata, K. Oka, K. Tanishita (1999) Spatial and temporal variation of secondary flow during oscillatory flow in model human central airways. J. Biomech. Eng. 121:565–573. doi:10.1115/1.2800855 PubMedCrossRefGoogle Scholar
  31. 31.
    Tanaka G., Y. Ueda, K. Tanishita (1998) Augmentation of axial dispersion by intermittent oscillatory flow. J. Biomech. Eng. 120:405–415. doi:10.1115/1.2798008 PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor G. (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 219: 186–203. doi:10.1098/rspa.1953.0139 CrossRefGoogle Scholar
  33. 33.
    Taylor G. (1954) The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A Math. Phys. Sci. 223: 446–468. doi:10.1098/rspa.1954.0130 Google Scholar
  34. 34.
    Weibel E. R. (1963) Morphometry of the Human Lung. New York: Academic PressGoogle Scholar
  35. 35.
    Womersley J. R. (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when their pressure gradient is known. J. Appl. Physiol. 127:553–563Google Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Kevin B. Heraty
    • 1
    • 2
  • John G. Laffey
    • 3
    • 4
  • Nathan J. Quinlan
    • 1
    • 2
  1. 1.Department of Mechanical and Biomedical EngineeringNational University of Ireland GalwayGalwayIreland
  2. 2.National Centre for Biomedical Engineering ScienceNational University of Ireland GalwayGalwayIreland
  3. 3.Lung Biology Group, National Centre for Biomedical Engineering ScienceNational University of Ireland GalwayGalwayIreland
  4. 4.Department of AnaesthesiaGalway University HospitalsGalwayIreland

Personalised recommendations