Evaluation of a Drift Flux Model for Simulating Submicrometer Aerosol Dynamics in Human Upper Tracheobronchial Airways

Article

Abstract

In this study, a hybrid drift flux velocity correction (DF-VC) model that accounts for both submicrometer particle diffusion and inertia was extended to transient conditions and was tested against existing experimental deposition data measured in a replica cast of the human tracheobronchial (TB) region for laminar and turbulent flow. To evaluate the effectiveness of the DF-VC model, deposition results were compared with a standard chemical species (CS) approach that neglects particle inertia. A numerical model of the TB cast was constructed from CT images and extended from the larynx to approximately the sixth respiratory generation. Experimentally determined inlet and outlet flow conditions were implemented in the computational model to ensure direct comparisons between simulations and measurements for the deposition of 40 and 200 nm particles. A low Reynolds number k–ω turbulence model was employed to resolve the laminar and turbulent flow regimes that coexist in the TB geometry. Interesting flow characteristics were observed due to the presence of the larynx, asymmetrical ventilation, and left-right asymmetry, which created a right-skewed laryngeal jet and flow reversal in the trachea that persist over a majority of the transient flow cycle. In comparison with the CS model, deposition results of the DF-VC approach persistently agreed better with experimental findings on a total and sub-branch basis, which indicated that the DF-VC model effectively captured the influence of finite particle inertia. For the submicrometer aerosols considered, transient flows were observed to increase deposition arising from impaction and decrease deposition arising from diffusion on a total and segmental basis compared with steady state conditions. However, the maximum deposition enhancement factor was significantly increased under transient conditions for both 40 nm (factor of 2) and 200 nm (factor of 7) aerosols. Results of this study indicate that a drift flux particle transport model with near-wall velocity corrections can provide an effective continuous-field approach for simulating the transport and deposition of submicrometer respiratory aerosols in human upper TB airways.

Keywords

Respiratory particle dynamics Respiratory dosimetry Microdosimetry Health effects of submicrometer aerosols Respiratory drug delivery Drift flux model Transient inhalation Turbulent particle dispersion 

References

  1. 1.
    Balashazy I., W. Hofmann, T. Heistracher Computation of local enhancement factors for the quantification of particle deposition patterns in airway bifurcations. J. Aerosol Sci. 30:185–203, 1999. doi:10.1016/S0021-8502(98)00040-8 CrossRefGoogle Scholar
  2. 2.
    Balashazy I., W. Hofmann, T. Heistracher Local particle deposition patterns may play a key role in the development of lung cancer. J. Appl. Physiol. 94:1719–1725, 2003PubMedGoogle Scholar
  3. 3.
    Bernstein G. M. A review of the influence of particle size, puff volume, and inhalation pattern on the deposition of cigarette smoke particles in the respiratory tract. Inhal. Toxicol. 16:675–689, 2004. doi:10.1080/08958370490476587 PubMedCrossRefGoogle Scholar
  4. 4.
    Brancatisano T., P. W. Collett, L. A. Engel Respiratory movements of the vocal cords. J. Appl. Physiol. 54(5):1269–1276, 1983PubMedGoogle Scholar
  5. 5.
    Chan T. L., M. Lippmann Experimental measurements and empirical modeling of the regional deposition of inhaled particles in humans. Am. Ind. Hyg. Assoc. J. 41:399–409, 1980PubMedGoogle Scholar
  6. 6.
    Chan T. L., R. M. Schreck, M. Lippmann. Effect of the laryngeal jet on particle deposition in the human trachea and upper bronchial airways. J. Aerosol Sci. 11:447–459, 1980. doi:10.1016/0021-8502(80)90117-2 CrossRefGoogle Scholar
  7. 7.
    Chen F., A. C. K. Lai. An Eulerian model for particle deposition under electrostatic and turbulent conditions. J. Aerosol Sci. 35:47–62, 2004. doi:10.1016/S0021-8502(03)00383-5 CrossRefGoogle Scholar
  8. 8.
    Cheng K. H., Y. S. Cheng, H. C. Yeh, R. A. Guilmette, S. Q. Simpson, S. Q. Yang, D. L. Swift In vivo measurements of nasal airway dimensions and ultrafine aerosol depositing in human nasal and oral airways. J. Aerosol Sci. 27:785–801, 1996. doi:10.1016/0021-8502(96)00029-8 CrossRefGoogle Scholar
  9. 9.
    Cheng Y. S., Y. F. Su, H. C. Yeh, D. L. Swift. Deposition of Thoron progeny in human head airways. Aerosol Sci. Technol. 18:359–375, 1993. doi:10.1080/02786829308959610 CrossRefGoogle Scholar
  10. 10.
    Cohen B. S., B. Asgharian. Deposition of ultrafine particles in the upper airways: an empirical analysis. J. Aerosol Sci. 21:789–797, 1990. doi:10.1016/0021-8502(90)90044-X CrossRefGoogle Scholar
  11. 11.
    Cohen B. S., R. G. Sussman, M. Lippmann. Ultrafine particle deposition in a human tracheobronchial cast. Aerosol Sci. Technol. 12:1082–1093, 1990. doi:10.1080/02786829008959418 CrossRefGoogle Scholar
  12. 12.
    Cohen B. S., J. Q. Xiong, B. Asgharian, L. Ayres Deposition of inhaled charged ultrafine particles in a simple tracheal model. J. Aerosol Sci. 26(7):1149–1160, 1995. doi:10.1016/0021-8502(95)00039-F CrossRefGoogle Scholar
  13. 13.
    Corcoran T. E., N. Chigier Inertial deposition effects: a study of aerosol mechanics in the trachea using laser Doppler velocimetry and fluorescent dye. J. Biomech. Eng. 124:629–637, 2002. doi:10.1115/1.1516572 PubMedCrossRefGoogle Scholar
  14. 14.
    Crowe C., M. Sommerfeld, Y. Tsuji Multiphase Flows with Drops and Bubbles. CRC Press, Boca Raton, 1998Google Scholar
  15. 15.
    Dendo R. I., R. F. Phalen, R. C. Mannix, M. J. Oldham Effects of breathing parameters on sidestream cigarette smoke deposition in a hollow tracheobronchial model. Am. Ind. Hyg. Assoc. J. 59(6):381–387, 1998. doi:10.1080/15428119891010631 PubMedGoogle Scholar
  16. 16.
    Diaz-Sanchez D. The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy 52(Suppl. 38):52–67, 1997PubMedCrossRefGoogle Scholar
  17. 17.
    Doll R., A. B. Hill Smoking and carcinoma of the lung: preliminary report. Br. Med. J. 2:739–748, 1950PubMedGoogle Scholar
  18. 18.
    England S. J., D. Bartlett, J. A. Daubenspeck Influence of human vocal cord movements on airflow and resistance during eupnea. J. Appl. Physiol. 52:773–779, 1982PubMedGoogle Scholar
  19. 19.
    Fan L. S., C. Zhu Principles of Gas–Solid Flows. Cambridge University Press, UK, 1998Google Scholar
  20. 20.
    Friedlander S. K. Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics, 2 edn. Oxford University Press, New York, 2000Google Scholar
  21. 21.
    Ghalichi F., X. Deng, A. D. Champlain, Y. Douville, M. King, R. Guidoin Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology 35(4&5):281–294, 1998. doi:10.1016/S0006-355X(99)80011-0 PubMedCrossRefGoogle Scholar
  22. 22.
    Gurman J. L., M. Lippmann, R. B. Schlesinger Particle deposition in replicate casts of the human upper trancheobronchial tree under constant and cyclic inspiratory flow. I. Experimental. Aerosol Sci. Technol. 3:245–252, 1984. doi:10.1080/02786828408959012 CrossRefGoogle Scholar
  23. 23.
    Gurman J. L., R. B. Schlesinger, M. Lippmann A variable-opening mechanical larynx for use in aerosol deposition studies. Am. Ind. Hyg. Assoc. J. 41:678–680, 1980PubMedGoogle Scholar
  24. 24.
    Heyder J., J. Gebhart, G. Rudolf, C. F. Schiller, W. Stahlhofen Deposition of particles in the human respiratory tract in the size range of 0.005–15 microns. J. Aerosol Sci. 17(5):811–825, 1986. doi:10.1016/0021-8502(86)90035-2 CrossRefGoogle Scholar
  25. 25.
    Hinds W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley, New York, 1999Google Scholar
  26. 26.
    Hofmann W., I. Balashazy, T. Heistracher The relationship between secondary flows and particle deposition patterns in airway bifurcations. Aerosol Sci. Technol. 35(6):958–968, 2001. doi:10.1080/027868201753306723 CrossRefGoogle Scholar
  27. 27.
    Hofmann W., R. Golser, I. Balashazy Inspiratory deposition efficiency of ultrafine particles in a human airway bifurcation model. Aerosol Sci. Technol. 37(12):988–994, 2003. doi:10.1080/02786820300898 CrossRefGoogle Scholar
  28. 28.
    Hofmann W., L. Morawska, R. Bergmann Environmental tobacco smoke deposition in the human respiratory tract: differences between experimental and theoretical approaches. J. Aerosol Med. 14(3):317–326, 2001. doi:10.1089/089426801316970277 PubMedCrossRefGoogle Scholar
  29. 29.
    Hofmann W., R. Sturm, J. S. Fleming, J. H. Conway, L. Bolt Simulation of three-dimensional particle deposition patterns in human lungs and comparison with experimental SPECT data. Aerosol Sci. Technol. 39:771–781, 2005Google Scholar
  30. 30.
    Hood E. Nanotechnology: looking as we leap. Environ. Health Perspect. 112(13):A740–A749, 2004PubMedGoogle Scholar
  31. 31.
    ICRP. Human Respiratory Tract Model for Radiological Protection. Elsevier Science Ltd., New York, 1994Google Scholar
  32. 32.
    Ingham D. B. Diffusion of aerosols from a stream flowing through a cylindrical tube. J. Aerosol Sci. 6:125–132, 1975. doi:10.1016/0021-8502(75)90005-1 CrossRefGoogle Scholar
  33. 33.
    Ingham D. B. Diffusion of aerosols in the entrance region of a smooth cylindrical pipe. J. Aerosol Sci. 22(3):253–257, 1991. doi:10.1016/S0021-8502(05)80003-5 CrossRefGoogle Scholar
  34. 34.
    Jaques P. A., C. S. Kim Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 12(8):715–731, 2000. doi:10.1080/08958370050085156 PubMedCrossRefGoogle Scholar
  35. 35.
    Kabilan S., C. L. Lin, E. A. Hoffman Characteristics of airflow in a CT-based ovine lung: a numerical study. J. Appl. Physiol. 102:1469–1482, 2007. doi:10.1152/japplphysiol.01219.2005 PubMedCrossRefGoogle Scholar
  36. 36.
    Keith C. H. Particle size studies on tobacco smoke. Beitr. zur Tabakforschung 11(3):123–131, 1982Google Scholar
  37. 37.
    Kim, C. S. and D. Fisher. In: Abstracts 4th International Aerosol Conference, edited by R. C. Flagan. Cincinnati, 1994, vol. 2, pp. 888–889Google Scholar
  38. 38.
    Kittelson D. B. Engines and nanoparticles: a review. J. Aerosol Sci. 29(5-6):575–588, 1998. doi:10.1016/S0021-8502(97)10037-4 CrossRefGoogle Scholar
  39. 39.
    Kreyling W. G., M. Semmler-Behnke, W. Moller Ultrafine particle-lung interactions: does size matter? J. Aerosol Med. 19:74–83, 2006. doi:10.1089/jam.2006.19.74 PubMedCrossRefGoogle Scholar
  40. 40.
    Kreyling W. G., M. Semmler, W. Moller Dosimetry and toxicology of ultrafine particles. J. Aerosol Med. 17(2):140–152, 2004. doi:10.1089/0894268041457147 PubMedCrossRefGoogle Scholar
  41. 41.
    Lee D., J. Lee Dispersion of aerosol bolus during one respiratory cycle in a model lung airway. J. Aerosol Sci. 33:1219, 2002. doi:10.1016/S0021-8502(02)00053-8 CrossRefGoogle Scholar
  42. 42.
    Li, Z., C. Kleinstreuer, and Z. Zhang. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. J. Aerosol Sci. 38(625–644), 2007. doi:10.1016/j.jaerosci.2007.03.010.
  43. 43.
    Li Z., C. Kleinstreuer, Z. Zhang Simulation of airflow fields and microparticle deposition in realistic human lung airway models. Part II: particle transport and deposition. Eur. J. Mech. B Fluids 26:632–649, 2007. doi:10.1016/j.euromechflu.2007.02.003 CrossRefGoogle Scholar
  44. 44.
    Li N., C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Y. Wang, T. Oberley, J. Froines, A. Nel. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111(4):455–460, 2003PubMedGoogle Scholar
  45. 45.
    Lin C. L., M. H. Tawhai, G. McLennan, E. A. Hoffman Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir. Physiol. Neurobiol. 157:295–309, 2007. doi:10.1016/j.resp.2007.02.006 PubMedCrossRefGoogle Scholar
  46. 46.
    Longest P. W., C. Kleinstreuer, J. R. Buchanan Efficient computation of micro-particle dynamics including wall effects. Comput. Fluids 33(4):577–601, 2004. doi:10.1016/j.compfluid.2003.06.002 CrossRefGoogle Scholar
  47. 47.
    Longest P. W., M. J. Oldham Numerical and experimental deposition of fine respiratory aerosols: development of a two-phase drift flux model with near-wall velocity corrections. J. Aerosol Sci. 39:48–70, 2008. doi:10.1016/j.jaerosci.2007.10.001 CrossRefGoogle Scholar
  48. 48.
    Longest P. W., S. Vinchurkar. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med. Eng. Phys. 29(3):350–366, 2007. doi:10.1016/j.medengphy.2006.05.012 PubMedCrossRefGoogle Scholar
  49. 49.
    Longest P. W., S. Vinchurkar Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J. Biomech. 40:305–316, 2007. doi:10.1016/j.jbiomech.2006.01.006 CrossRefGoogle Scholar
  50. 50.
    Longest P. W., S. Vinchurkar, T. B. Martonen Transport and deposition of respiratory aerosols in models of childhood asthma. J. Aerosol Sci. 37:1234–1257, 2006. doi:10.1016/j.jaerosci.2006.01.011 CrossRefGoogle Scholar
  51. 51.
    Longest P. W., J. Xi Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J. Aerosol Sci. 38(1):111–130, 2007. doi:10.1016/j.jaerosci.2006.09.007 CrossRefGoogle Scholar
  52. 52.
    Longest P. W., J. Xi Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci. Technol. 41:380–397, 2007. doi:10.1080/02786820701203223 CrossRefGoogle Scholar
  53. 53.
    Manninen, M., V. Taivassalo, and S. Kallio. On the Mixture Model for Multiphase Flow. VTT Publications 288, Technical Research Center of Finland, 1996Google Scholar
  54. 54.
    Martonen, T. B. In: Aerosols, edited by S. D. Lee. Chesea, Michigan: Lewis Publishers, 1986.Google Scholar
  55. 55.
    Martonen T. B. Mathematical-model for the selective deposition of inhaled pharmaceuticals. J. Pharm. Sci. 82(12):1191–1199, 1993. doi:10.1002/jps.2600821202 PubMedCrossRefGoogle Scholar
  56. 56.
    Martonen T. B., W. Hoffmann, J. E. Lowe Cigarette smoke and lung cancer. Health Phys. 52(2):213–217, 1987PubMedGoogle Scholar
  57. 57.
    Martonen T. B., Z. Zhang, R. Lessmann Fluid dynamics of the human larynx and upper tracheobronchial airways. Aerosol Sci. Technol. 19:133–144, 1993. doi:10.1080/02786829308959627 CrossRefGoogle Scholar
  58. 58.
    Martonen T. B., Z. Zhang, Y. Yang Particle diffusion with entrance effects in a smooth-walled cylinder. J. Aerosol Sci. 27(1):139–150, 1996. doi:10.1016/0021-8502(95)00530-7 CrossRefGoogle Scholar
  59. 59.
    Martonen T. B., Z. Zhang, Y. Yang, G. Bottei Airway surface irregularities promote particle diffusion in the human lung. Radiat. Prot. Dosimetry 59:5–18, 1995Google Scholar
  60. 60.
    Matida E. A., W. H. Finlay, M. Breuer, C. F. Lange Improving prediction of aerosol deposition in an idealized mouth using large-eddy simulation. J. Aerosol Med. 19(3):290–300, 2006. doi:10.1089/jam.2006.19.290 PubMedCrossRefGoogle Scholar
  61. 61.
    Maynard A. D., P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, V. Castranova Exposure to carbon nanotube material: aerosol release during the handling of unrefined single walled carbon nanotube material. J. Toxicol. Environ. Health Part A 67:87–107, 2004PubMedCrossRefGoogle Scholar
  62. 62.
    Morawska L., W. Barron, J. Hitchins Experimental deposition of environmental tobacco smoke submicrometer particulate matter in the human respiratory tract. Am. Ind. Hyg. Assoc. J. 60:334–339, 1999. doi:10.1080/00028899908984450 PubMedGoogle Scholar
  63. 63.
    Morawska L., W. Hofmann, J. Hitchins-Loveday, C. Swanson, K. Mengersen Experimental study of the deposition of combustion aerosols in the human respiratory tract. J. Aerosol Sci. 36:939–957, 2005. doi:10.1016/j.jaerosci.2005.03.015 CrossRefGoogle Scholar
  64. 64.
    Moskal A., L. Gradon Temporal and spatial deposition of aerosol particles in the upper human airways during breathing cycles. J. Aerosol Sci. 33:1525, 2002. doi:10.1016/S0021-8502(02)00108-8 CrossRefGoogle Scholar
  65. 65.
    Nicolai T. Environmental air pollution and lung disease in children. Monaldi Arch. Chest Dis. 54(6):475–478, 1999PubMedGoogle Scholar
  66. 66.
    Nowak N., P. P. Kakade, A. V. Annapragada Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31:374–390, 2003. doi:10.1114/1.1560632 PubMedCrossRefGoogle Scholar
  67. 67.
    Oberdorster G., M. J. Utell Ultrafine particles in the urban air: to the respiratory tract and beyond. Environ. Health Perspect. 110(8):A440–A441, 2002PubMedGoogle Scholar
  68. 68.
    Pandya R. J., G. Solomon, A. Kinner, J. R. Balmes Diesel exhaust and asthma: hypotheses and molecular mechanisms of action. Environ. Health Perspect. 110:103–112, 2002PubMedGoogle Scholar
  69. 69.
    Pedley T. J. Pulmonary fluid dynamics. Annu. Rev. Fluid Mech. 9:229–274, 1977. doi:10.1146/annurev.fl.09.010177.001305 CrossRefGoogle Scholar
  70. 70.
    Phalen R. F., M. J. Oldham, R. C. Mannix Cigarette smoke deposition in the tracheobronchial tree: evidence for colligative effects. Aerosol Sci. Technol. 20:215–226, 1994. doi:10.1080/02786829408959678 CrossRefGoogle Scholar
  71. 71.
    Phalen R. F., M. J. Oldham, A. E. Nel Tracheobronchial particle dose considerations for in vitro toxicology studies. Toxicol. Sci. 92(1):126–132, 2006. doi:10.1093/toxsci/kfj182 PubMedCrossRefGoogle Scholar
  72. 72.
    Robinson R. J., M. J. Oldham, R. E. Clinkenbeard, P. Rai Experimental and numerical smoke carcinogen deposition in a multi-generation human replica tracheobronchial model. Ann. Biomed. Eng. 34(3):373–383, 2006. doi:10.1007/s10439-005-9049-5 PubMedCrossRefGoogle Scholar
  73. 73.
    Schlesinger R. B., M. Lippmann Particle deposition in casts of the human upper tracheobronchial tree. Am. Ind. Hyg. Assoc. J. 33:237–251, 1972. doi:10.1080/0002889728506636 PubMedGoogle Scholar
  74. 74.
    Schwartz J. Air pollution and children’s health. Pediatrics 113(4):1037–1043, 2004PubMedGoogle Scholar
  75. 75.
    Shi H., C. Kleinstreuer, Z. Zhang Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J. Biomech. Eng. 128:697–706, 2006. doi:10.1115/1.2244574 PubMedCrossRefGoogle Scholar
  76. 76.
    Shi H., C. Kleinstreuer, Z. Zhang, C. S. Kim Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Phys. Fluids 16(7):2199–2213, 2004. doi:10.1063/1.1724830 CrossRefGoogle Scholar
  77. 77.
    Smith S., Y. S. Cheng, H. C. Yeh Deposition of ultrafine particles in human tracheobronchial airways of adults and children. Aerosol Sci. Technol. 35(3):697–709, 2001. doi:10.1080/02786820152546743 CrossRefGoogle Scholar
  78. 78.
    Sosnowski T. R., A. Moskal, L. Gradon Dynamics of oropharyngeal aerosol transport and deposition with the realistic flow pattern. Inhal. Toxicol. 18(10):773–780, 2006. doi:10.1080/08958370600748737 PubMedCrossRefGoogle Scholar
  79. 79.
    Stahlhofen W., G. Rudolf, A. C. James Intercomparison of experimental regional aerosol deposition data. J. Aerosol Med. 2(3):285–308, 1989Google Scholar
  80. 80.
    Tannehill J. C., D. A. Anderson, R. H. Pletcher Computational Fluid Mechanics and Heat Transfer, 2 edn. Taylor and Francis, Washington, 1997Google Scholar
  81. 81.
    Tian L., G. Ahmadi Particle deposition in turbulent duct flows—comparisons of different model predictions. J. Aerosol Sci. 38:377–397, 2007. doi:10.1016/j.jaerosci.2006.12.003 CrossRefGoogle Scholar
  82. 82.
    Tu J., G. H. Yeoh, C. Liu Computational Fluid Dynamics: A Practical Approach. Butterworth-Heinemann, Amsterdam, 2007Google Scholar
  83. 83.
    U.S. Surgeon General, The Health Consequences of Involuntary Smoking: A Report of the Surgeon General (stock # 017-001-00458-9) PA: U.S. Government Printing Office, 1986.Google Scholar
  84. 84.
    van Ertbruggen, C., C. Hirsch, and M. Paiva. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. J. Appl. Physiol. 98(3):970–980, 2005. doi:10.1152/japplphysiol.00795.2004.
  85. 85.
    Wang J. B., A. C. K. Lai A new drift-flux model for particle transport and deposition in human airways. J. Biomech. Eng. 128:97–105, 2006. doi:10.1115/1.2133763 PubMedCrossRefGoogle Scholar
  86. 86.
    Wilcox D. C. Turbulence Modeling for CFD, 2nd edn. DCW Industries, Inc., California, 1998Google Scholar
  87. 87.
    Wynder E. L., E. A. Graham Tobacco smoking as a possible etiologic factor in bronchiogenic carcinoma. a study of six hundred and eighty-four proved cases. JAMA 143:329–336, 1950Google Scholar
  88. 88.
    Xi J., P. W. Longest Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles. ASME J. Biomech. Eng. 130:011008, 2007. doi:10.1115/1.2838039 CrossRefGoogle Scholar
  89. 89.
    Xi J., P. W. Longest Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann. Biomed. Eng. 35(4):560–581, 2007. doi:10.1007/s10439-006-9245-y PubMedCrossRefGoogle Scholar
  90. 90.
    Xi J., P. W. Longest, T. B. Martonen Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J. Appl. Physiol. 104:1761–1777, 2008. doi:10.1152/japplphysiol.01233.2007 PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang Z., C. Kleinstreuer Airflow structures and nano-particle deposition in a human upper airway model. J. Comput. Phys. 198(1):178–210, 2004. doi:10.1016/j.jcp.2003.11.034 CrossRefGoogle Scholar
  92. 92.
    Zhang Z., C. Kleinstreuer, J. F. Donohue, C. S. Kim Comparison of micro- and nano-size particle depositions in a human upper airway model. J. Aerosol Sci. 36(2):211–233, 2005. doi:10.1016/j.jaerosci.2004.08.006 CrossRefGoogle Scholar
  93. 93.
    Zhang Z., C. Kleinstreuer, C. S. Kim Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. J. Aerosol Sci. 33(2):257–281, 2002. doi:10.1016/S0021-8502(01)00170-7 CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Systems EngineeringUniversity of ArkansasLittle RockUSA
  3. 3.Department of PharmaceuticsVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations