Annals of Biomedical Engineering

, Volume 36, Issue 12, pp 2111–2120 | Cite as

Anisotropic Nature of Mouse Lung Parenchyma

  • Wayne Mitzner
  • Jonathan Fallica
  • John Bishai


Lung parenchyma is normally considered to be isotropic, that is, its properties do not depend upon specific preferential directions. The assumption of isotropy is important for both modeling of lung mechanical properties and quantitative histologic measurements. This assumption, however, has not been previously examined at the microscopic level, in part because of the difficulty in large lungs of obtaining sufficient numbers of small samples of tissue while maintaining the spatial orientation. In the mouse, however, this difficulty is minimized. We evaluated the parenchymal isotropy in mouse lungs by quantifying the mean airspace chord lengths (Lm) from high-resolution histology of complete sections surrounded by an intact continuous visceral pleural membrane. We partitioned this lung into 5 isolated regions, defined by the distance from the visceral pleura. To further evaluate the isotropy, we also measured Lm in two orthogonal spatial directions with respect to the section orientation, and varied the sample line spacing from 3 to 280 μm. Results show a striking degree of parenchymal anisotropy in normal mouse lungs. The Lm was significantly greater when grid lines were parallel to the ventral–dorsal axis of the tissue. In addition the Lm was significantly smaller within 300 μm of the visceral pleura. Whether this anisotropy results from intrinsic structural factors or from nonuniform shrinkage during conventional tissue processing is uncertain, but it should be considered when interpreting quantitative morphometric measurements made in the mouse lung.


Morphometry Histology Alveolar structure Heterogeneity Stereology Isotropy 


  1. 1.
    Allen G. B., Pavone L. A., DiRocco J. D., Bates J. H., Nieman G. F. Pulmonary impedance and alveolar instability during injurious ventilation in rats. J. Appl. Physiol. 99:723–730, 2005. doi: 10.1152/japplphysiol.01339.2004 PubMedCrossRefGoogle Scholar
  2. 2.
    Campbell H., Tomkeieff S. I. Calculation of the internal surface of a lung. Nature 170: 117, 1952. doi: 10.1038/170117a0 CrossRefGoogle Scholar
  3. 3.
    Cruz-Orive L. M., Weibel E. R. Sampling designs for stereology. J. Microsc. 122: 235–257, 1981PubMedGoogle Scholar
  4. 4.
    Dobrin P. B. Effect of histologic preparation on the cross-sectional area of arterial rings. J. Surg. Res. 61: 413–415, 1996. doi: 10.1006/jsre.1996.0138 PubMedCrossRefGoogle Scholar
  5. 5.
    Gundersen H. J. The smooth fractionator. J. Microsc. 207: 191–210, 2002. doi: 10.1046/j.1365–2818.2002.01054.x PubMedCrossRefGoogle Scholar
  6. 6.
    Gundersen H. J., Jensen E. B., Kieu K., Nielsen J. The efficiency of systematic sampling in stereology-reconsidered. J. Microsc. 193: 199–211, 1999. doi: 10.1046/j.1365-2818.1999.00457.x PubMedCrossRefGoogle Scholar
  7. 7.
    Halbower A. C., Mason R. J., Abman S. H., Tuder R. M. Agarose infiltration improves morphology of cryostat sections of lung. Lab. Invest. 71: 149–153, 1994PubMedGoogle Scholar
  8. 8.
    Huang Y. I., Mitzner W. Distribution analysis of alveolar size by digital imaging. J. Comput.-Assist. Microsc. 1: 397–409, 1989Google Scholar
  9. 9.
    Hyde D. M., Blozis S. A., Avdalovic M. V., Putney L. F., Dettorre R., Quesenberry N. J., Singh P., Tyler N. K. Alveoli increase in number but not size from birth to adulthood in rhesus monkeys. Am. J. Physiol. Lung. Cell. Mol. Physiol. 293: L570–L579, 2007. doi: 10.1152/ajplung.00467.2006 PubMedCrossRefGoogle Scholar
  10. 10.
    Lum H., Huang I., Mitzner W. Morphologic evidence for alveolar recruitment during inflation at high transpulmonary pressure. J. Appl. Physiol. 68: 2280–2286, 1990PubMedGoogle Scholar
  11. 11.
    Lum H., Mitzner W. Effects of 10% formalin fixation on fixed lung volume and lung tissue shrinkage. Am. Rev. Respir. Dis. 132: 1078–1083, 1985PubMedGoogle Scholar
  12. 12.
    Mattfeldt T., Mall G., Gharehbaghi H., Moller P. Estimation of surface area and length with the orientator. J. Microsc. 159: 301–317, 1990PubMedGoogle Scholar
  13. 13.
    Mead J., Takishima T., Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28: 596–608, 1970PubMedGoogle Scholar
  14. 14.
    Miki H., Butler J. P., Rogers R. A., Lehr J. L. Geometric hysteresis in pulmonary surface-to-volume ratio during tidal breathing. J. Appl. Physiol. 75: 1630–1636, 1993PubMedGoogle Scholar
  15. 15.
    Nyengaard J. R., Gundersen H. J. The isector: a simple and direct method for generating isotropic, uniform random sections from small specimens. J. Microsc. 165: 427–431, 1992Google Scholar
  16. 16.
    Oldmixon E. H., Butler J. P., Hoppin F. G. Jr. Dihedral angles between alveolar septa. J. Appl. Physiol. 64: 299–307, 1988PubMedGoogle Scholar
  17. 17.
    Parameswaran, H., Majumdar, A., Ito, S., Alencar, A. M., B. Suki. Quantitative characterization of airspace enlargement in emphysema. J. Appl. Physiol. 100: 186–193, 2006PubMedCrossRefGoogle Scholar
  18. 18.
    Perlman C. E., Bhattacharya J. Alveolar expansion imaged by optical sectioning microscopy. J. Appl. Physiol. 103: 1037–1044, 2007. doi: 10.1152/japplphysiol.00160.2007 PubMedCrossRefGoogle Scholar
  19. 19.
    Scherle W. A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26: 57–60, 1970PubMedGoogle Scholar
  20. 20.
    Schiller H. J., McCann U. G. 2nd, Carney D. E., Gatto L. A., Steinberg J. M., Nieman G. F. Altered alveolar mechanics in the acutely injured lung. Crit. Care Med. 29: 1049–1055, 2001. doi: 10.1097/00003246-200105000-00036 PubMedCrossRefGoogle Scholar
  21. 21.
    Shannon, C. E. Communication in the presence of noise. Institute of Radio Engineers (Reprinted in Proceedings of the IEEE, 86, 447–457, 1998) 37:10–21, 1949.Google Scholar
  22. 22.
    Soutiere S. E., Tankersley C. G., Mitzner W. Differences in alveolar size in inbred mouse strains. Respir. Physiol. Neurobiol. 140: 283–291, 2004. doi: 10.1016/j.resp.2004.02.003 PubMedCrossRefGoogle Scholar
  23. 23.
    Weibel E. R. Morphometry of the Human Lung. New York: Academic Press, 1963Google Scholar
  24. 24.
    Weibel E. R., Hsia C. C., Ochs M. How much is there really? Why stereology is essential in lung morphometry. J. Appl. Physiol. 102: 459–467, 2007. doi: 10.1152/japplphysiol.00808.2006 PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  1. 1.Johns Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations