Advertisement

Annals of Biomedical Engineering

, Volume 36, Issue 10, pp 1624–1640 | Cite as

Towards a Unified Theory of Muscle Contraction. I: Foundations

  • D.A. Smith
  • M.A. Geeves
  • J. Sleep
  • S.M. Mijailovich
Article

Abstract

Molecular models of contractility in striated muscle require an integrated description of the action of myosin motors, firstly in the filament lattice of the half-sarcomere. Existing models do not adequately reflect the biochemistry of the myosin motor and its sarcomeric environment. The biochemical actin–myosin–ATP cycle is reviewed, and we propose a model cycle with two 4- to 5-nm working strokes, where phosphate is released slowly after the first stroke. A smaller third stroke is associated with ATP-induced detachment from actin. A comprehensive model is defined by applying such a cycle to all myosin-S1 heads in the half-sarcomere, subject to generic constraints as follows: (a) all strain-dependent kinetics required for actin–myosin interactions are derived from reaction-energy landscapes and applied to dimeric myosin, (b) actin–myosin interactions in the half-sarcomere are controlled by matching rules derived from the structure of the filaments, so that each dimer may be associated with a target zone of three actin sites, and (c) the myosin and actin filaments are treated as elastically extensible. Numerical predictions for such a model are presented in the following paper.

Keywords

Muscle Contraction Lattice Filaments Compliance 

Notes

Acknowledgments

We acknowledge helpful discussions with many people, in particular P. Bennett, K. Burton, M. Irving, P. Luther, A. Mansson, H. Matheiss, G. Offer, V. Ovchinnikov, K.W. Ranatunga, and R.M. Simmons, who have contributed to the evolution of this paper. This work was carried out under a Bioengineering Research Partnership of the National Institutes of Health (Grant no. R01 AR048776). All authors acknowledge financial support from this program. M.A. Geeves is also supported by the Wellcome Trust (Program Grant 07002), and J. Sleep by the Medical Research Council (UK).

References

  1. 1.
    Alberty R. A. (1968) Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphatase to adenosine diphosphate. J. Biol. Chem. 243:1337–1343PubMedGoogle Scholar
  2. 2.
    Bagshaw C. R. (1987) Are two heads better than one?. Nature 326:746–747PubMedCrossRefGoogle Scholar
  3. 3.
    Bagshaw C. R., Trentham D. R. (1974) The characterization of myosin-product complexes and of product-release steps during the magnesium-ion dependent adenosine triphosphatase reaction. Biochem. J. 141:331–349PubMedGoogle Scholar
  4. 4.
    Berger C. E., Fagnant P. M., Heizmann S., Trybus K. M., Geeves M. A. (2001) ADP binding induces an asymmetry between the heads of unphosphorylated myosin. J. Biol. Chem. 276:23240–23245PubMedCrossRefGoogle Scholar
  5. 5.
    Bordas J., Svennson A., Rothery M., Lowy J., Diakun G., Boesecke P. (1999) Extensibility and symmetry of actin filaments in contracting muscle. Biophys. J. 77:3197–3207PubMedGoogle Scholar
  6. 6.
    Brunello E., Reconditi M., Elangovan R., Linari M., Sun Y. -B., Narayanan T., Panine P., Piazzesi G., Irving M., Lombardi V. (2007) Skeletal muscle resists stretch by rapid binding of the second motor domain of myosin to actin. Proc. Natl. Acad. Sci. USA 104:20114–20119PubMedCrossRefGoogle Scholar
  7. 7.
    Capitanio M., Canepari M., Cacciafesta P., Lombardi V., Cicchi R., Maffei M., Pavone F. S., Bottinelli R. (2006) Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc. Natl. Acad. Sci. USA 103:87–92PubMedCrossRefGoogle Scholar
  8. 8.
    Chase P. B., Macpherson J. M., Daniel T. L. (2004) A spatially explicit nanomechanical model of the half-sarcomere: myofilament compliance affects Ca2+-activation. Ann. Biomed. Eng. 32:1559–1568PubMedCrossRefGoogle Scholar
  9. 9.
    Conibear P., Geeves M. A. (1998) Cooperativity between the two heads of rabbit skeletal muscle heavy meromyosin in binding to actin. Biophys. J. 75:926–937PubMedGoogle Scholar
  10. 10.
    Cooke R. (1997) Actomyosin interaction in striated muscle. Physiol. Rev. 77:597–671Google Scholar
  11. 11.
    Cooke R. (2004) The sliding filament model: 1972–2004. J. Gen. Physiol. 123:643–656PubMedCrossRefGoogle Scholar
  12. 12.
    Cooke R., Franks K. (1980) All myosin heads form bonds with actin in rigor rabbit skeletal muscle. Biochemistry 19:2265–2269PubMedCrossRefGoogle Scholar
  13. 13.
    Dantzig J. A., Goldman Y. E., Millar N. C., Lacktis J., Homsher E. (1992) Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibers. J. Physiol. 451:247–278PubMedGoogle Scholar
  14. 14.
    Dominguez R., Freyzon Y., Trybus K. M., Cohen C. (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571PubMedCrossRefGoogle Scholar
  15. 15.
    Edman K. A. P. (1975) Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J. Physiol. (London) 246:255–275Google Scholar
  16. 16.
    Edman K. A. P., Mansson A., Caputo C. (1997) The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function. J. Physiol. 503 Pt 1:141–156PubMedCrossRefGoogle Scholar
  17. 17.
    Eisenberg E., Hill T. L. (1985) Muscle contraction and free energy transduction in biological systems. Science 227:999–1006PubMedCrossRefGoogle Scholar
  18. 18.
    Eisenberg E., Hill T. L., Chen Y. D. (1980) Cross-bridge model of muscle contraction. Biophys. J. 29:195–227PubMedGoogle Scholar
  19. 19.
    Ferenczi M. A., Bershitsky S. Y., Koubassova N., Siththanandan V., Helsby W. I., Panine P., Roessie M., Narayanan T., Tsaturyan A. K. (2005) The “Roll and Lock” mechanism of force generation in muscle. Structure 13:131–141PubMedCrossRefGoogle Scholar
  20. 20.
    Finer J. T., Simmons R. M., Spudich J. A. (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119PubMedCrossRefGoogle Scholar
  21. 21.
    Ford L. E., Huxley A. F., Simmons R. M. (1977) Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J. Physiol. 269:441–515PubMedGoogle Scholar
  22. 22.
    Ford L. E., Huxley A. F., Simmons R. M. (1981) The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. 311:218–249Google Scholar
  23. 23.
    Geeves M. A. (1991) The dynamics of actin and myosin association and the crossbridge model of muscle contraction. Biochem. J. 274:1–19PubMedGoogle Scholar
  24. 24.
    Geeves M. A., Fedorov R., Manstein D. J. (2005) Molecular mechanism of actomyosin-based motility. Cell. Mol. Life Sci. 62:1462–1477PubMedCrossRefGoogle Scholar
  25. 25.
    Geeves M. A., Holmes K. C. (1999) Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68:6876–728PubMedCrossRefGoogle Scholar
  26. 26.
    Geeves M. A., Holmes K. C. (2005) The molecular mechanism of muscle contraction. Adv. Protein Chem. 71:161–169PubMedCrossRefGoogle Scholar
  27. 27.
    Gollub J., Cremo C., Cooke R. (1996) ADP release produces a rotation of the neck region of smooth muscle myosin but not skeletal myosin. Nat. Struct. Biol. 3:796–802PubMedCrossRefGoogle Scholar
  28. 28.
    Hanson J., Huxley H. E. (1953) Structural basis of the cross-striations in muscle. Nature 172:530–532PubMedCrossRefGoogle Scholar
  29. 29.
    Hill T. L. (1974) Theoretical formalism for the sliding filament model of contraction of striated muscle, Part I. Prog. Phys. Mol. Biol. 28:267–340CrossRefGoogle Scholar
  30. 30.
    Houdusse A., Szent-Gyorgi A. G., Cohen C. (2000) Three conformational states of scallop myosin S1. Proc. Nat. Acad. Sci. USA 97:11238–11243PubMedCrossRefGoogle Scholar
  31. 31.
    Hudson S. L., Harford J. J., Denny R. C., Squire J. M. (1997) Myosin head configuration in relaxed fish muscle: resting state myosin heads must swing axially by up to 150A or turn upside down to reach rigor. J. Mol. Biol. 273:440–455PubMedCrossRefGoogle Scholar
  32. 32.
    Hussan J., de Tombe P. P., Rice J. J. (2006) A spatially detailed myofilament model as a basis for large-scale biological simulations. IBM J. Res. Dev. 50:583–600CrossRefGoogle Scholar
  33. 33.
    Huxley A. F. (1957) Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7:255–318PubMedGoogle Scholar
  34. 34.
    Huxley H. E. (1969) The mechanism of muscular contraction. Science 164:1356–1366PubMedCrossRefGoogle Scholar
  35. 35.
    Huxley A. F., Simmons R. M. (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538PubMedCrossRefGoogle Scholar
  36. 36.
    Huxley H. E., Stewart A., Sosa H., Irving M. (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys. J. 67:2411–2421PubMedGoogle Scholar
  37. 37.
    Huxley A. F., Tideswell S. (1996) Filament compliance and tension transients in muscle. J. Muscle Res. Cell Motil. 17:507–511PubMedCrossRefGoogle Scholar
  38. 38.
    Ito K., Liu X., Katayama E., Uyeda T. Q. P. (1999) Cooperativity between two heads of dictyostelium myosin II in in-vitro motility and ATP hydrolysis. Biophys. J. 76:985–992PubMedGoogle Scholar
  39. 39.
    Kabsch, W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44PubMedCrossRefGoogle Scholar
  40. 40.
    Knight P. J. (1996) Dynamic behavior of the head-tail junction of myosin. J. Mol. Biol. 255:269–274PubMedCrossRefGoogle Scholar
  41. 41.
    Kohler J., Winkler G., Schulte I., Scholz T., McKenna W., Brenner B., Kraft T. (2002) Mutation of the myosin converter domain alters cross-bridge elasticity. Proc. Natl. Acad. Sci. USA 99:3557–3562PubMedCrossRefGoogle Scholar
  42. 42.
    Kojima H., Ishijima A., Yanagida T. (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro manipulation. Proc. Natl. Acad. Sci. USA 91:12962–12966PubMedCrossRefGoogle Scholar
  43. 43.
    Lauzon A. M., Fagnant P. M., Warshaw D. M., Trybus K. M. (2001) Coiled-coil unwinding at the smooth muscle myosin head-rod junction is required for optimal mechanical performance. Biophys. J. 80:1900–1904PubMedGoogle Scholar
  44. 44.
    Lewalle A., Steffen W., Stevenson O., Ouyang Z., Sleep J. (2008) Single molecule measurement of the stiffness of the rigor myosin head. Biophys. J. 94:2160–2169PubMedCrossRefGoogle Scholar
  45. 45.
    Linari M., Caremani M., Piperio C., Brandt P., Lombardi V. (2007) Stiffness and fraction of myosin motors responsible for active force in permeabilised muscle fibers from rabbit psoas. Biophys. J. 92:2476–2490PubMedCrossRefGoogle Scholar
  46. 46.
    Lombardi V., Piazzesi G., Reconditi M., Linari M., Lucii L., Stewart A., Sun Y. -B., Boesecke P., Naryanan T., Irving T., Irving M. (2004) X-ray diffraction studies of the contractile mechanism in single muscle fibres. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359:1883–1893PubMedCrossRefGoogle Scholar
  47. 47.
    Luther P. K. (2004) Evolution of the muscle lattice in the vertebrate kingdom. Microsc. Anal. 18:9–11Google Scholar
  48. 48.
    Luther P. K., Squire J. M. (1990) Three-dimensional structure of the vertebrate muscle A-band. II The myosin filament superlattice. J. Mol. Biol. 141:409–439CrossRefGoogle Scholar
  49. 49.
    Lymn R. W., Taylor E. W. (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624PubMedCrossRefGoogle Scholar
  50. 50.
    Malnasi-Czizmadia A., Pearson D. S., Kovacs M., Woolley R. J., Geeves M. A., Bagshaw C. R. (2001) Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with a Dictyostelium myosin II mutant containing a single tryptophan residue. Biochemistry 40:12727–12737CrossRefGoogle Scholar
  51. 51.
    Martyn D. A., Chase P. B., Regnier M., Gordon A. M. (2002) A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers. Biophys. J. 83:3425–3434PubMedGoogle Scholar
  52. 52.
    Matsubara I., Goldman Y. E., Simmons R. M. (1984) Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach. J. Mol. Biol. 173:15–33PubMedCrossRefGoogle Scholar
  53. 53.
    Mijailovich S. M., Fredberg J. J., Butler J. P. (1996) On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness. Biophys. J. 71:1475–84PubMedGoogle Scholar
  54. 54.
    Millar N. C., Homsher E. (1990) The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. J. Biol. Chem. 265:20234–20240PubMedGoogle Scholar
  55. 55.
    Nishizaka T., Seo R., Tadakuma H., Kinosita K., Ishiwata S. (2000) Characterization of single actomyosin rigor bonds: load dependence of lifetime and mechanical properties. Biophys. J. 79:962–974PubMedGoogle Scholar
  56. 56.
    Nyitrai M., Rossi R., Adamek N., Pellegrino M. A., Bottinelli R., Geeves M. A. (2006) What limits the velocity of fast skeletal muscle contraction in mammals?. J. Mol. Biol. 355:432–442PubMedCrossRefGoogle Scholar
  57. 57.
    Offer G., Knight P. J., Burgess S. A., Alamo L., Padron R. (2000) A new model for the surface arrangement of myosin molecules in tarantula thick filaments. J. Mol. Biol. 298:239–260PubMedCrossRefGoogle Scholar
  58. 58.
    Pate E., Cooke R. (1989) A model of crossbridge action: the effects of ATP, ADP and Pi. J. Muscle Res. Cell Motil. 10:181–196PubMedCrossRefGoogle Scholar
  59. 59.
    Pate E., Naber N., Matuska M., Franks-Skiba K., Cooke R. (1997) Opening of the myosin nucleotide triphosphate binding domain during the ATPase cycle. Biochem. 36:12155–12166PubMedCrossRefGoogle Scholar
  60. 60.
    Piazzesi G., Lombardi V. (1995) A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys. J. 68:1966–1979PubMedCrossRefGoogle Scholar
  61. 61.
    Piazzesi G., Lucii L., Lombardi V. (2002) The size and speed of the working stroke of muscle myosin and its dependence on the force. J. Physiol. 545 (Pt 1):145–151PubMedCrossRefGoogle Scholar
  62. 62.
    Piazzesi G., Reconditi M., Linari M., Lucii L., Bianco P., Brunello E., Decostre V., Stewart A., Gore D. B., Irving T. C., Irving M., Lombardi V. (2007) Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131:784–795PubMedCrossRefGoogle Scholar
  63. 63.
    Piazzesi G., Reconditi M., Linari M., Lucii L., Sun Y. -B., Narayanan T., Boesecke P., Lombardi V., Irving M. (2002) Mechanism of force generation by myosin heads in skeletal muscle. Nature 415:659–662PubMedCrossRefGoogle Scholar
  64. 64.
    Ranatunga K. W., Coupland M. E., Mutungi G. (2002) An asymmetry in the phosphate dependence of tension transients induced by length perturbations in mammalian (rabbit psoas) muscle fibres. J. Physiol. 542(Pt 3):899–910PubMedCrossRefGoogle Scholar
  65. 65.
    Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65PubMedCrossRefGoogle Scholar
  66. 66.
    Rayment I., Rypniewski W. R., Schmidt-Base K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58PubMedCrossRefGoogle Scholar
  67. 67.
    Regnier M., Morris C., Homsher E. (1995) Regulation of the cross-bridge transition from a weakly to a strongly bound state in skinned rabbit muscle fibers. Am. J. Physiol. 269:C1532–C1539PubMedGoogle Scholar
  68. 68.
    Sleep J. A., Hutton R. L. (1980) Exchange between inorganic phosphates and adenosine 5’-triphosphate in the medium by actomyosin subfragment 1. Biochemistry 19:1276–1283PubMedCrossRefGoogle Scholar
  69. 69.
    Smith D. A., Sleep J. (2004) Mechanokinetics of rapid tension recovery in muscle: the myosin working stroke is followed by a slower release of phosphate. Biophys. J. 87:442–456PubMedCrossRefGoogle Scholar
  70. 70.
    Smith D., Sleep J. (2006) Strain-dependent kinetics of the myosin working stroke, and how they could be probed with optical trap experiments. Biophys. J. 91:3359–3369PubMedCrossRefGoogle Scholar
  71. 71.
    Steffen W., Smith D. A., Simmons R. M., Sleep J. (2001) Mapping the actin filament with myosin. Proc. Natl. Acad. Sci. USA 98:14949–14954PubMedCrossRefGoogle Scholar
  72. 72.
    Steffen W., Smith D., Sleep J. (2003) The working stroke upon myosin-nucleotide complexes binding to actin. Proc. Natl. Acad. Sci. USA 100:6434–6439PubMedCrossRefGoogle Scholar
  73. 73.
    Stein L. A., Schwarz R. P., Chock P. B., Eisenberg E. (1979) Mechanism of actomyosin triphosphatase. Evidence that adenosine 5’-triphosphatase hydrolysis can occur without dissociation of the actomyosin complex. Biochemistry 18:3895–3909PubMedCrossRefGoogle Scholar
  74. 74.
    Tanner B. C. W., Daniel T. L., Regnier M. (2007) Sarcomere lattice geometry influences cooperative myosin binding in muscle. PLoS Comp. Biol. 3:1195–1211CrossRefGoogle Scholar
  75. 75.
    Taylor E. W. (1979) Mechanism of actomyosin ATPase and the problem of muscle contraction. Crit. Rev. Biochem. 6:103–164CrossRefGoogle Scholar
  76. 76.
    Taylor K. A., Schmitz H., Reedy M. C., Goldman Y. E., Franzini-Armstrong C., Sasaki H., Tregear R. T., Poole K., Lucaveche C., Edwards R. J., Chen L. F., Winkler H., Reedy M. K. (1999) Tomographic 3D reconstruction of quick-frozen, Ca2+ activated contracting insect flight muscle. Cell 99:421–431PubMedCrossRefGoogle Scholar
  77. 77.
    Telley I. A., Denoth J. (2007) Sarcomere dynamics during muscular contraction and their implications to muscle function. J. Muscle Res. Cell Motil. 28:89–104PubMedCrossRefGoogle Scholar
  78. 78.
    Tregear R. T., Reedy M. C., Goldman Y. E., Taylor K. A., Winkler H., Franzini-Armstrong C., Sasaki H., Lucaveche C., Reedy M. K. (2004) Cross-bridge number, position, and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys. J. 86:3009–3019PubMedGoogle Scholar
  79. 79.
    Vandenboom R., Hannon J. D., Sieck G. C. (2002) Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation. J. Physiol. 543(Pt 2):555–566PubMedCrossRefGoogle Scholar
  80. 80.
    Veigel C., Coluccio L. M., Jontes J. D., Sparrow J. C., Milligan R. A., Molloy J. E. (1999) The motor protein myosin-I produces its working stroke in two steps. Nature 398:530–533PubMedCrossRefGoogle Scholar
  81. 81.
    Veigel C., Wang F., Sellers J. R., Molloy J. E. (2002) The gated gait of the processive molecular motor myosin V. Nat. Cell Biol. 4:59–65PubMedCrossRefGoogle Scholar
  82. 82.
    Wakabayshi K., Sugimoto Y., Tanaka H., Ueno Y., Takezawa Y., Amemiya Y. (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67:2422–2435Google Scholar
  83. 83.
    White H. D., Belknap B., Webb M. R. (1997) Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry 36:11828–11836PubMedCrossRefGoogle Scholar
  84. 84.
    Whittaker, M., E. Wilson-Kubatek, J. E. Smith, L. Faust, R. A. Milligan, and H. L. Sweeney. A 35-A movement of smooth muscle myosin on ADP release. Nature 378:748–751, 1995Google Scholar
  85. 85.
    Wood J. E., Mann R. W. (1981) A sliding-filament cross-bridge ensemble model of muscle contraction for mechanical transients. Math. Biosciences 57:211–263CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • D.A. Smith
    • 1
    • 2
  • M.A. Geeves
    • 3
  • J. Sleep
    • 4
  • S.M. Mijailovich
    • 5
  1. 1.Department of PhysiologyMonash UniversityClaytonAustralia
  2. 2.Department of ZoologyLatrobe UniversityBundooraAustralia
  3. 3.Department of BiosciencesUniversity of KentCanterburyUK
  4. 4.Randall CentreKing’s College LondonLondonUK
  5. 5.Harvard School of Public HealthBostonUSA

Personalised recommendations