Advertisement

Annals of Biomedical Engineering

, 36:1565 | Cite as

Neurite Outgrowth on a DNA Crosslinked Hydrogel with Tunable Stiffnesses

  • Frank Xue Jiang
  • Bernard Yurke
  • Bonnie L. Firestein
  • Noshir A. LangranaEmail author
Article

Abstract

Mechanical cues arising from extracellular matrices greatly affect cellular properties, and hence, are of significance in designing biomaterials. In this study, a DNA crosslinked hydrogel was employed to examine cellular responses of spinal cord neurons to substrate compliances. Using DNA as crosslinkers in polymeric hydrogel formation has given rise to a new class of hydrogels with a number of attractive properties (e.g., reversible gelation and controlled crosslinking). Here, it was demonstrated that by varying length of crosslinker, monomer concentration, and level of crosslinking, DNA gel stiffnesses span from ∼100 Pa to 30 kPa. Assessment of neurite outgrowth on functionalized DNA gels showed that although primary dendrite length is not significantly affected, spinal cord neurons extend more primary dendrites and shorter axons on stiffer gels. Additionally, a greater proportion of neurons have more primary dendrites and shorter axons on stiffer gels. There is a pronounced reduction in focal adhesion kinase (FAK) when neurons are exposed to stiffer substrates, suggesting its involvement in neuronal mechanosensing and neuritogenesis in response to stiffness. These results demonstrate the importance of mechanical aspects of the cell–ECM interactions, and provide guidance for the design of mechanical properties of bio-scaffolds for neural tissue engineering applications.

Keywords

Neuron Spinal cord injuries Material design Crosslinking Crosslinker length Focal adhesion kinase Mechanosensing  Neural tissue engineering 

Notes

Acknowledgments

This study was supported by a grant from the New Jersey Commission on Spinal Cord Research (Grant # 05-3041-SCR-E-0) and partially supported by National Institute of Health (Grant # EB004919-01) and grant from the New Jersey Commission on Spinal Cord Research (Grant # 07A-019-SCR1). This work was performed towards the partial fulfillment of the Ph.D. requirements of the first author. A first year fellowship awarded to F.X.J. from the Department of Biomedical Engineering of Rutgers University is also acknowledged. Suggestions and advice from Drs. David Shreiber and Rene Schloss are appreciated. We thank Dr. David Lin for assistance in DNA design and gel preparation, Dr. Yangzhou Du for assistance in spinal cord cell culture and study of DNA degradation, Dr. Baogang Li for assistance in experiments, Dr. Penelope Georges for comments. Discussions from members of both Langrana and Firestein laboratories have been very helpful and are also acknowledged.

References

  1. 1.
    Alemdaroglu F. E., A. Herrmann DNA meets synthetic polymers – highly versatile hybrid materials. Org. Biomol. Chem. 5:1311–1320, 2007. doi: 10.1039/b617941j PubMedCrossRefGoogle Scholar
  2. 2.
    Badylak S. F. The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–3593, 2007. doi: 10.1016/j.biomaterials.2007.04.043 PubMedCrossRefGoogle Scholar
  3. 3.
    Bakshi A., O. Fisher, T. Dagci, B. T. Himes, I. Fischer, A. Lowman Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury. J. Neurosurg. Spine 1:322–329, 2004PubMedGoogle Scholar
  4. 4.
    Banes A. J., G. Lee, R. Graff, C. Otey, J. Archambault, M. Tsuzaki, M. Elfervig, J. Qi Mechanical forces and signaling in connective tissue cells: cellular mechanisms of detection, transduction, and responses to mechanical deformation. Curr. Opin. Orthop. 12:389–396, 2001. doi: 10.1097/00001433-200110000-00005 CrossRefGoogle Scholar
  5. 5.
    Bao G., S. Suresh. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715–725, 2003. doi: 10.1038/nmat1001 PubMedCrossRefGoogle Scholar
  6. 6.
    Bershadsky A. D., N. Q. Balaban, B. Geiger Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19:677–695, 2003. doi: 10.1146/annurev.cellbio.19.111301.153011 PubMedCrossRefGoogle Scholar
  7. 7.
    Bisht B., H. L. Goel, C. S. Dey Focal adhesion kinase regulates insulin resistance in skeletal muscle. Diabetologia. 50:1058–1069, 2007. doi: 10.1007/s00125-007-0591-6 PubMedCrossRefGoogle Scholar
  8. 8.
    Bonanomi D., F. Valtorta. Focal adhesion kinase in neuritogenesis In: I. de Curtis, editor. Intracellular Mechanisms for Neuritogenesis, Springer US: New York 2006; pp 155–179CrossRefGoogle Scholar
  9. 9.
    Burgaya F., A. Menegon, M. Menegoz, F. Valtorta, J. A. Girault Focal adhesion kinase in rat central nervous system. Eur. J. Neurosci. 7:1810–1821, 1995. doi: 10.1111/j.1460-9568.1995.tb00700.x PubMedCrossRefGoogle Scholar
  10. 10.
    Bustamante C., Z. Bryant, S. B. Smith. Ten years of tension: single-molecule DNA mechanics. Nature. 421:423–427, 2003. doi: 10.1038/nature01405 PubMedCrossRefGoogle Scholar
  11. 11.
    Carone T. W., J. M. Hasenwinkel. Mechanical and morphological characterization of homogeneous and bilayered poly(2-hydroxyethyl methacrylate) scaffolds for use in cns nerve regeneration. J. Biomed. Mater. Res. B: Appl. Biomater. 78:274–282, 2006. doi: 10.1002/jbm.b.30483 Google Scholar
  12. 12.
    Chen L. M., D. Bailey, C. Fernandez-Valle Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating schwann cells. J. Neurosci. 20:3776–3784, 2000PubMedGoogle Scholar
  13. 13.
    Contestabile A., D. Bonanomi, F. Burgaya, J. A. Girault, F. Valtorta. Localization of focal adhesion kinase isoforms in cells of the central nervous system. Int. J. Dev. Neurosci. 21:83–93, 2003. doi: 10.1016/S0736-5748(02)00126-0 PubMedCrossRefGoogle Scholar
  14. 14.
    Cukierman E., R. Pankov, D. R. Stevens, K. M. Yamada. Taking cell-matrix adhesions to the third dimension. Science. 294:1708–1712, 2001. doi: 10.1126/science.1064829 PubMedCrossRefGoogle Scholar
  15. 15.
    Curtis A., M. Riehle. Tissue engineering: The biophysical background. Phys. Med. Biol. 46:R47–65, 2001. doi: 10.1088/0031-9155/46/4/201 PubMedCrossRefGoogle Scholar
  16. 16.
    Dalton P. D., L. Flynn, M. S. Shoichet. Manufacture of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels. Biomaterials. 23:3843–3851, 2002. doi: 10.1016/S0142-9612(02)00120-5 PubMedCrossRefGoogle Scholar
  17. 17.
    Dotti C. G., G. A. Banker, L. I. Binder. The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture. Neuroscience. 23:121–130, 1987. doi: 10.1016/0306-4522(87)90276-4 PubMedCrossRefGoogle Scholar
  18. 18.
    Duan X., H. Sheardown. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties, corneal epithelial cell interactions. Biomaterials. 27:4608–4617, 2006. doi: 10.1016/j.biomaterials.2006.04.022 PubMedCrossRefGoogle Scholar
  19. 19.
    El Haj A. Biomechanical interactions in tissue engineering and surgical repair (BITES). Med. Biol. Eng. Comput. 42:2, 2004. doi: 10.1007/BF02351003 PubMedCrossRefGoogle Scholar
  20. 20.
    Engler A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004PubMedGoogle Scholar
  21. 21.
    Fawcett J. Repair of spinal cord injuries: where are we, where are we going? Spinal Cord 40:615–623, 2002. doi: 10.1038/sj.sc.3101328 PubMedCrossRefGoogle Scholar
  22. 22.
    Feng Z., M. Yamato, T. Akutsu, T. Nakamura, T. Okano, M. Umezu. Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering. Artif. Organs 27:84–91, 2003. doi: 10.1046/j.1525-1594.2003.07187.x PubMedCrossRefGoogle Scholar
  23. 23.
    Flanagan L. A., Y. E. Ju, B. Marg, M. Osterfield, P. A. Janmey Neurite branching on deformable substrates. Neuroreport 13:2411–2415, 2002. doi: 10.1097/00001756-200212200-00007 PubMedCrossRefGoogle Scholar
  24. 24.
    Flynn L., P. D. Dalton, M. S. Shoichet Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials. 24:4265–4272, 2003. doi: 10.1016/S0142-9612(03)00334-X PubMedCrossRefGoogle Scholar
  25. 25.
    Garcia A. J., D. Boettiger. Integrin-fibronectin interactions at the cell-material interface: initial integrin binding, signaling. Biomaterials. 20:2427–2433, 1999. doi: 10.1016/S0142-9612(99)00170-2 PubMedCrossRefGoogle Scholar
  26. 26.
    Gaudet C., W. A. Marganski, S. Kim, C. T. Brown, V. Gunderia, M. Dembo, J. Y. Wong Influence of type i collagen surface density on fibroblast spreading, motility, and contractility. Biophys. J. 85:3329–3335, 2003PubMedGoogle Scholar
  27. 27.
    Gefen A., N. Gefen, Q. Zhu, R. Raghupathi, S. S. Margulies Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma. 20:1163–1177, 2003. doi: 10.1089/089771503770802853 PubMedCrossRefGoogle Scholar
  28. 28.
    Georges P. C., W. J. Miller, D. F. Meaney, E. S. Sawyer, P. A. Janmey Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90:3012–3018, 2006. doi: 10.1529/biophysj.105.073114 PubMedCrossRefGoogle Scholar
  29. 29.
    Greenebaum, B., C. H. Sutton, M. S. Vadula, J. H. Battocletti, T. Swiontek, J. DeKeyser, and B. F. Sisken. Effects of pulsed magnetic fields on neurite outgrowth from chick embryo dorsal root ganglia. Bioelectromagnetics 17:293–302, 1996. doi :10.1002/(SICI)1521-186X(1996)17:4<293::AID-BEM5>3.0.CO;2-ZGoogle Scholar
  30. 30.
    Guldberg R. E. Consideration of mechanical factors. Ann. N. Y. Acad. Sci. 961:312–314, 2002PubMedCrossRefGoogle Scholar
  31. 31.
    Gunn J. W., S. D. Turner B. K. Mann. Adhesive and mechanical properties of hydrogels influence neurite extension. J. Biomed. Mater. Res. A 72:91–97, 2005. doi: 10.1002/jbm.a.30203 PubMedCrossRefGoogle Scholar
  32. 32.
    Haisch A., G. N. Duda, D. Schroeder, A. Groger, C. Gebert, K. Leder, M. Sittinger. The morphology and biomechanical characteristics of subcutaneously implanted tissue-engineered human septal cartilage. Eur. Arch. Otorhinolaryngol. 262:993–997, 2005. doi: 10.1007/s00405-005-0935-0 PubMedCrossRefGoogle Scholar
  33. 33.
    Hidalgo-Bastida L. A., J. J. Barry, N. M. Everitt, F. R. Rose, L. D. Buttery, I. P. Hall, W. C. Claycomb, K. M. Shakesheff. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Acta Biomater. 3:457–462, 2007. doi: 10.1016/j.actbio.2006.12.006 PubMedCrossRefGoogle Scholar
  34. 34.
    Hirakawa K., K. Hashizume, T. Hayashi. [Viscoelastic property of human brain – for the analysis of impact injury (author’s transl)]. No To Shinkei 33:1057–1065, 1981PubMedGoogle Scholar
  35. 35.
    Horn E. M., M. Beaumont, X. Z. Shu, A. Harvey, G. D. Prestwich, K. M. Horn, A. R. Gibson, M. C. Preul, A. Panitch. Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury. J. Neurosurg. Spine. 6:133–140, 2007. doi: 10.3171/spi.2007.6.2.133 PubMedCrossRefGoogle Scholar
  36. 36.
    Hruza G. J. Polyacrylamide hydrogel soft-tissue filler is safe, effective. J. Watch Dermatol. 116:1137–1148 2005Google Scholar
  37. 37.
    Ivankovic-Dikic I., E. Gronroos, A. Blaukat, B. U. Barth, I. Dikic. Pyk2 and fak regulate neurite outgrowth induced by growth factors and integrins. Nat. Cell Biol. 2:574–581, 2000. doi: 10.1038/35023515 PubMedCrossRefGoogle Scholar
  38. 38.
    Jiang X., P. C. Georges, B. Li, Y. Du, M. K. Kutzing, M. L. Previtera, N. A. Langrana, B. L. Firestein. Cell growth in response to mechanical stiffness is affected by neuron-astroglia interactions. Open Neurosci. J. 1:7–14, 2007Google Scholar
  39. 39.
    Khatiwala C. B., S. R. Peyton, A. J. Putnam. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic mc3t3-e1 cells. Am. J. Physiol. Cell Physiol. 290:C1640–1650, 2006. doi: 10.1152/ajpcell.00455.2005 PubMedCrossRefGoogle Scholar
  40. 40.
    Kornack D. R., R. J. Giger. Probing microtubule +tips: regulation of axon branching. Curr. Opin. Neurobiol. 15:58–66, 2005. doi: 10.1016/j.conb.2005.01.009 PubMedCrossRefGoogle Scholar
  41. 41.
    Kuhn T. B., E. T. Stoeckli, M. A. Condrau, F. G. Rathjen, P. Sonderegger Neurite outgrowth on immobilized axonin-1 is mediated by a heterophilic interaction with l1(g4). J. Cell Biol. 115:1113–1126, 1991. doi: 10.1083/jcb.115.4.1113 PubMedCrossRefGoogle Scholar
  42. 42.
    Leach J. B., X. Q. Brown, J. G. Jacot, P. A. Dimilla, J. Y. Wong Neurite outgrowth and branching of pc12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4:26–34, 2007. doi: 10.1088/1741-2560/4/2/003 PubMedCrossRefGoogle Scholar
  43. 43.
    Li L., N. Sharma, U. Chippada, X. Jiang, R. Schloss, M. L. Yarmush, N. A. Langrana (2008) Functional modulation of es-derived hepatocyte lineage cells via substrate compliance alteration. Ann. Biomed. Eng. 36:865–876. doi: 10.1007/s10439-008-9458-3 PubMedCrossRefGoogle Scholar
  44. 44.
    Liedl T., H. Dietz, B. Yurke (2007). Controlled trapping and release of quantum dots in a DNA-linked hydrogel. SMALL 3:1688PubMedCrossRefGoogle Scholar
  45. 45.
    Lin D. C. (2005). Design and Properties of a New DNA-Crosslinked Polymer Hydrogel. Piscataway, NJ: Department of Mechanical & Aerospace Engineering, Rutgers UniversityGoogle Scholar
  46. 46.
    Lin D., N. Langrana, B. Yurke. Inducing reversible stiffness changes in DNA-crosslinked gels. J. Mater. Res. 20:1456–1464, 2006. doi: 10.1557/JMR.2005.0186 CrossRefGoogle Scholar
  47. 47.
    Lin D. C., B. Yurke, N. A. Langrana. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126:104–110, 2004. doi: 10.1115/1.1645529 PubMedCrossRefGoogle Scholar
  48. 48.
    Lu Y. B., K. Franze, G. Seifert, C. Steinhauser, F. Kirchhoff, H. Wolburg, J. Guck, P. Janmey, E. Q. Wei, J. Kas, A. Reichenbach Viscoelastic properties of individual glial cells and neurons in the cns. Proc. Natl. Acad. Sci. USA 103:17759–17764, 2006. doi: 10.1073/pnas.0606150103 PubMedCrossRefGoogle Scholar
  49. 49.
    Mabilleau G., I. C. Stancu, T. Honore, G. Legeay, C. Cincu, M. F. Basle, D. Chappard Effects of the length of crosslink chain on poly(2-hydroxyethyl methacrylate) (phema) swelling and biomechanical properties. J. Biomed. Mater. Res. A 77:35–42, 2006. doi: 10.1002/jbm.a.30618 PubMedGoogle Scholar
  50. 50.
    Miller K., K. Chinzei, G. Orssengo, P. Bednarz. Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33:1369–1376, 2000. doi: 10.1016/S0021-9290(00)00120-2 PubMedCrossRefGoogle Scholar
  51. 51.
    Nikolic M. The molecular mystery of neuronal migration: Fak, cdk5. Trends Cell Biol. 14:1–5, 2004. doi: 10.1016/j.tcb.2003.10.010 PubMedCrossRefGoogle Scholar
  52. 52.
    Novikova L. N., L. N. Novikov, J. O. Kellerth. Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury. Curr. Opin. Neurol. 16:711–715 2003. doi: 10.1097/00019052-200312000-00011 PubMedCrossRefGoogle Scholar
  53. 53.
    Pedersen J. A., M. A. Swartz Mechanobiology in the third dimension. Ann. Biomed. Eng. 33:1469–1490, 2005. doi: 10.1007/s10439-005-8159-4 PubMedCrossRefGoogle Scholar
  54. 54.
    Rafaels, K., J. Kerrigan, N. Langrana, and D. Lin. Molecular modeling as a visualization tool in design of DNA crosslinked polyacrylamide. In: IMECE2004, ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, Paper no. IMECE2004-59930, November 2004Google Scholar
  55. 55.
    Rico B., H. E. Beggs, D. Schahin-Reed, N. Kimes, A. Schmidt, L. F. Reichardt. Control of axonal branching and synapse formation by focal adhesion kinase. Nat. Neurosci. 7:1059–1069, 2004. doi: 10.1038/nn1317 PubMedCrossRefGoogle Scholar
  56. 56.
    Robles E., T. M. Gomez. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat. Neurosci. 9:1274–1283, 2006. doi: 10.1038/nn1762 PubMedCrossRefGoogle Scholar
  57. 57.
    Rosso F., A. Giordano, M. Barbarisi, A. Barbarisi. From cell-ecm interactions to tissue engineering. J. Cell Physiol. 199:174–180, 2004. doi: 10.1002/jcp.10471 PubMedCrossRefGoogle Scholar
  58. 58.
    Schober M., S. Raghavan, M. Nikolova, L. Polak, H. A. Pasolli, H. E. Beggs, L. F. Reichardt, E. Fuchs. Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. J. Cell Biol. 176:667–680, 2007. doi: 10.1083/jcb.200608010 PubMedCrossRefGoogle Scholar
  59. 59.
    Spector M. Novel cell-scaffold interactions encountered in tissue engineering: contractile behavior of musculoskeletal connective tissue cells. Tissue Eng. 8:351–357, 2002. doi: 10.1089/107632702760184628 PubMedCrossRefGoogle Scholar
  60. 60.
    Stevens, G. R., C. Zhang, M. M. Berg, M. P. Lambert, K. Barber, I. Cantallops, A. Routtenberg, and W. L. Klein. CNS neuronal focal adhesion kinase forms clusters that co-localize with vinculin. J. Neurosci. Res. 46:445–455, 1996. doi :10.1002/(SICI)1097-4547(19961115)46:4<445::AID-JNR6>3.0.CO;2-GGoogle Scholar
  61. 61.
    Taqvi S., K. Roy. Influence of scaffold physical properties, stromal cell coculture on hematopoietic differentiation of mouse embryonic stem cells. Biomaterials. 27:6024–6031, 2006. doi: 10.1016/j.biomaterials.2006.05.052 PubMedCrossRefGoogle Scholar
  62. 62.
    Teng Y. D., E. B. Lavik, X. Qu, K. I. Park, J. Ourednik, D. Zurakowski, R. Langer, E. Y. Snyder. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci. USA 99:3024–3029, 2002. doi: 10.1073/pnas.052678899 PubMedCrossRefGoogle Scholar
  63. 63.
    Threadgill R., K. Bobb, A. Ghosh (1997) Regulation of dendritic growth and remodeling by rho, rac, and cdc42. Neuron 19:625–634. doi: 10.1016/S0896-6273(00)80376-1 PubMedCrossRefGoogle Scholar
  64. 64.
    Vickers S. M., L. S. Squitieri, M. Spector. Effects of cross-linking type ii collagen-gag scaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilage formation. Tissue Eng. 12:1345–1355, 2006. doi: 10.1089/ten.2006.12.1345 PubMedCrossRefGoogle Scholar
  65. 65.
    Wang H. B., M. Dembo, S. K. Hanks, Y. Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl. Acad. Sci. USA 98:11295–11300, 2001. doi: 10.1073/pnas.201201198 PubMedCrossRefGoogle Scholar
  66. 66.
    Wang Y. L., R. J. Pelham Jr. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298:489–496, 1998. doi: 10.1016/S0076-6879(98)98041-7 PubMedCrossRefGoogle Scholar
  67. 67.
    Williamson R., T. Scales, B. R. Clark, G. Gibb, C. H. Reynolds, S. Kellie, I. N. Bird, I. M. Varndell, P. W. Sheppard, I. Everall, B. H. Anderton. Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-beta peptide exposure: involvement of src family protein kinases. J. Neurosci. 22:10–20, 2002PubMedGoogle Scholar
  68. 68.
    Xi T. F., C. X. Fan, X. M. Feng, Z. Y. Wan, C. R. Wang, L. L. Chou. Cytotoxicity and altered c-myc gene expression by medical polyacrylamide hydrogel. J. Biomed. Mater. Res. A. 78:283–290, 2006. doi: 10.1002/jbm.a.30619 PubMedGoogle Scholar
  69. 69.
    Zhu C., G. Bao, N. Wang. Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2:189–226, 2000. doi: 10.1146/annurev.bioeng.2.1.189 PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Frank Xue Jiang
    • 1
  • Bernard Yurke
    • 2
  • Bonnie L. Firestein
    • 3
  • Noshir A. Langrana
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Bell LaboratoriesAlcatel-LucentMurray HillUSA
  3. 3.Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUSA

Personalised recommendations