Combined Behavioral and EEG Power Analysis in DAI Improve Accuracy in the Assessment of Sustained Attention Deficit

  • Erika Molteni
  • Anna Maria Bianchi
  • Michele Butti
  • Gianluigi Reni
  • Claudio Zucca
Article

Abstract

In clinical routine, the evaluation of sustained attention is often performed by analyzing the behavioral data collected during specific tests. Such analyses are rarely accompanied by a detailed examination of the subject’s simultaneous electroencephalographic (EEG) activity, and particularly its frequency content. In this study, a group of healthy volunteers and a group of patients affected by diffuse axonal injury (DAI) were tested while performing a modified version of the Conners’ continuous performance test. A comparative study was carried out between the behavioral and neuropsychological data obtained during the task, to investigate neural activation. Spectral power was calculated for each of the recorded EEG signals, taking account of the frequency bands traditionally considered in literature. Then a compressed spectral array sequence of spectra was plotted to put into evidence the temporal modifications in the signal power spectral density, and, finally, the analysis of the rhythm variability was carried out. Evaluation of the results thus obtained shows that the two groups registered very different cerebral activation dynamics during the ongoing attentional task. Moreover, DAI patients showed mild cortical activation in the prefrontal region, spread equally throughout both brain hemispheres, while controls showed strong predominant activation of the right prefrontal area. Our findings encourage further investigations of the combined employment of tests and EEG recordings during the clinical assessment of sustained attention performance.

Keywords

EEG frequency analysis Traumatic brain injury Diffuse axonal injury Continuous performance test EEG rhythms 

References

  1. 1.
    Abdel-Dayem H. M., H. Abu-Judeh, M. Kumar, S. Atay, S. Naddaf, H. El-Zeftawy, J. Q. Luo 1998 SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury. Clin. Nucl. Med. 23(5):309–317PubMedCrossRefGoogle Scholar
  2. 2.
    Ballard J. C. 2001 Assessing attention: comparison of response-inhibition and traditional continuous performance tests. J. Clin. Exp. Neuropsychol. 23(3):331–350PubMedGoogle Scholar
  3. 3.
    Bigler E. D., D. D. Blatter, C. V. Anderson, S. C. Johnson, S. D. Gale, R. O. Hopkins, B. Burnett 1997 Hippocampal volume in normal aging and traumatic brain injury. AJNR Am. J. Neuroradiol. 18(1):11–23PubMedGoogle Scholar
  4. 4.
    Bigler E. D. 2003 Neurobiology and neuropathology underlie the neuropsychological deficits associated with traumatic brain injury. Arch. Clin. Neuropsychol. 18(6):595–621PubMedCrossRefGoogle Scholar
  5. 5.
    Bigler E. D., J. L. Snyder 1995 Neuropsychological outcome and quantitative neuroimaging in mild head injury. Arch. Clin. Neuropsychol. 10(2):159–174PubMedCrossRefGoogle Scholar
  6. 6.
    Blessing W. W. 1997 The Lower Brainstem and Bodily Homeostasis. New York: Oxford University PressGoogle Scholar
  7. 7.
    Bonne O., A. Gilboa, Y. Louzoun, O. Kempf-Sherf, M. Katz, Y. Fishman, Z. Ben-Nahum, Y. Krausz, M. Bocher, H. Lester, R. Chisin, B. Lerer 2003 Cerebral blood flow in chronic symptomatic mild traumatic brain injury. Psychiatry Res. 124(3):141–152PubMedCrossRefGoogle Scholar
  8. 8.
    Butti M., A. Pastori, A. Merzagora, C. Zucca, A. Bianchi, G. Reni, S. Cerutti 2006 Multimodal analysis of a sustained attention protocol: Continuous Performance Test assessed with Near Infrared Spectroscopy and EEG. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:1040–1043PubMedGoogle Scholar
  9. 9.
    Conners C. K. 1994 Conners’ Continuous Performance Test. User’s Manual. Toronto, Canada: Multi-Health SystemsGoogle Scholar
  10. 10.
    Dehaene S., J. P. Changeux 2005 Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. PLoS Biol. 3(5):e141. Epub 2005 Apr 12PubMedCrossRefGoogle Scholar
  11. 11.
    Dockree P. M., M. A. Bellgrove, F. M. O’Keeffe, P. Moloney, L. Aimola, S. Carton, I. H. Robertson 2005 Sustained attention in traumatic brain injury (TBI) and healthy controls: enhanced sensitivity with dual-task load. Exp. Brain Res. 168(1–2):218–229PubMedGoogle Scholar
  12. 12.
    Dockree P. M., S. P. Kelly, R. A. Roche, M. J. Hogan, R. B. Reilly, I. H. Robertson 2004 Behavioural and physiological impairments of sustained attention after traumatic brain injury. Brain Res. Cogn. Brain Res. 20(3):403–414PubMedCrossRefGoogle Scholar
  13. 13.
    Engel A. K., W. Singer 2001 Temporal binding and the neural correlates of sensory awareness. Trends Cognit. Sci. 5:16–25CrossRefGoogle Scholar
  14. 14.
    Fallgatter A. J., D. Brandeis, W. K. Strik 1997 A robust assessment of the NoGo-anteriorisation of P300 microstates in a cued Continuous Performance Test. Brain Topogr. 9(4):295–302PubMedCrossRefGoogle Scholar
  15. 15.
    Fitzgibbon S. P., K. J. Popo, L. Mackenzie, C. R. Clark, J. O. Willoughby 2004 Cognitive tasks augment gamma EEG power. Clin. Neurophysiol. 115:1802–1809PubMedCrossRefGoogle Scholar
  16. 16.
    Fontaine A., P. Azouvi, P. Remy, B. Bussel, Y. Samson 1999 Functional anatomy of neuropsychological deficits after severe traumatic brain injury. Neurology 53(9):1963–1968PubMedGoogle Scholar
  17. 17.
    Gale S. D., R. B. Burr, E. D. Bigler, D. Blatter 1993 Fornix degeneration and memory in traumatic brain injury. Brain Res. Bull. 32(4):345–349PubMedCrossRefGoogle Scholar
  18. 18.
    Gale S. D., S. C. Johnson, E. D. Bigler, D. D. Blatter 1995 Nonspecific white matter degeneration following traumatic brain injury. J. Int. Neuropsychol. Soc. 1(1):17–28PubMedGoogle Scholar
  19. 19.
    Gandy S. E., R. B. Snow, R. D. Zimmerman, M. D. Deck 1984 Cranial nuclear magnetic resonance imaging in head trauma. Ann. Neurol. 16(2):254–257PubMedCrossRefGoogle Scholar
  20. 20.
    Gentilini M., P. Nichelli, R. Schoenhuber, P. Bortolotti, L. Tonelli, A. Falasca, G. A. Merli 1985 Neuropsychological evaluation of mild head injury. J. Neurol. Neurosurg. Psychiatry. 48(2):137–140PubMedGoogle Scholar
  21. 21.
    Gentry L. R., J. C. Godersky, B. H. Thompson 1989 Traumatic brain stem injury: MR imaging. Radiology. 171(1):177–187PubMedGoogle Scholar
  22. 22.
    Gentry L. R., B. Thompson, J. C. Godersky 1988 Trauma to the corpus callosum: MR features. AJNR Am. J. Neuroradiol. 9(6):1129–1138PubMedGoogle Scholar
  23. 23.
    Glass G. V., K. D. Hopkins 1984 Statistical Methods in Education and Psychology (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall, Inc.Google Scholar
  24. 24.
    Graham D. I., J. H. Adams, L. S. Murray, B. Jennett 2005 Neuropathology of the vegetative state after head injury. Neuropsychol. Rehabil. 15(3–4):198–213PubMedCrossRefGoogle Scholar
  25. 25.
    Hall K. M., T. Bushnik, B. Lakisic-Kazazic, J. Wright, A. Cantagallo 2001 Assessing traumatic brain injury outcome measures for long-term follow-up of community-based individuals. Arch. Phys. Med. Rehabil. 82(3):367–374PubMedCrossRefGoogle Scholar
  26. 26.
    Hammoud D. A., B. A. Wasserman 2002 Diffuse axonal injuries: pathophysiology and imaging. Neuroimaging Clin. N Am. 12(2):205–216PubMedCrossRefGoogle Scholar
  27. 27.
    Homack S., and C. A. Riccio. Conners’ continuous performance test (2nd ed., CCPT-II). J. Attention Disord. 3(9):556–558Google Scholar
  28. 28.
    Joliot M., U. Ribary, R. Llinas 1994 Human oscillatory brain activity near 40 Hz coexist with cognitive temporal binding. Proc. Natl. Acad. Sci. USA. 91:11748–11751PubMedCrossRefGoogle Scholar
  29. 29.
    Kesler S. R., H. F. Adams, E. D. Bigler 2000 SPECT, MR and quantitative MR imaging: correlates with neuropsychological and psychological outcome in traumatic brain injury. Brain Inj. 14(10):851–7PubMedCrossRefGoogle Scholar
  30. 30.
    Kilner J., L. Bott, A. Posada 2005 Modulations in the degree of synchronization during ongoing oscillatory activity in the human brain. Eur. J. Neurosci. 21(9):2547–2554PubMedCrossRefGoogle Scholar
  31. 31.
    Klimesch W., M. Doppelmayr, H. Russegger, T. Pachinger 1996b Theta band power in the human scalp EEG and the encoding of new information. NeuroReport. 7:1235–1240PubMedCrossRefGoogle Scholar
  32. 32.
    Klimesch W. 1996a Memory processes, brain oscillations and EEG synchronization. J. Psychophysiol. 24:61–100CrossRefGoogle Scholar
  33. 33.
    Leininger B. E., S. E. Gramling, A. D. Farrell, J. S. Kreutzer, E. A. Peck III 1990 Neuropsychological deficits in symptomatic minor head injury patients after concussion and mild concussion. J. Neurol. Neurosurg. Psychiatry. 53(4):293–296PubMedGoogle Scholar
  34. 34.
    Lew H. L., E. H. Lee, S. S. L. Pan, E. S. Date 2004 Electrophysiologic abnormalities of auditory and visual information processing in patients with traumatic brain injury. Am. J. Phys. Med. Rehabil. 83:428–433PubMedCrossRefGoogle Scholar
  35. 35.
    Llinas R., U. Ribary 1993 Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl. Acad. Sci. USA. 90(5):2078–2081PubMedCrossRefGoogle Scholar
  36. 36.
    Makeig S., A. J. Bell, T. P. Jung, T. J. Sejnowski 1996 Independent component analysis of electroencephalographic data. Adv. Neural Inf. Process. Syst. 8:145–151Google Scholar
  37. 37.
    Manly T., A. M. Owen, L. McAvinue, A. Datta, G. H. Lewis, S. K. Scott, C. Rorden, J. Pickard, I. H. Robertson 2003 Enhancing the sensitivity of a sustained attention task to frontal damage. Convergent clinical and functional imaging evidence. Neurocase. 9(4):340–349PubMedCrossRefGoogle Scholar
  38. 38.
    Maruishi M., M. Miyatani, T. Nakao, H. Muranaka 2007 Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study. J. Neurol. Neurosurg. Psychiatry. 4:168–173CrossRefGoogle Scholar
  39. 39.
    Mathias J. L., J. A. Beall, E. D. Bigler 2004 Neuropsychological and information processing deficits following mild traumatic brain injury. J. Int. Neuropsychol. Soc. 10(2):286–297PubMedCrossRefGoogle Scholar
  40. 40.
    Molteni E., A. M. Bianchi, M. Butti, G. Reni, C. Zucca (2007) Analysis of the dynamical behaviour of the EEG rhythms during a test of sustained attention. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007:1298–1301PubMedGoogle Scholar
  41. 41.
    Müller M. M., J. Bosch, T. Elbert, A. Kreiter, M. V. Sosa, P. V. Sosa, B. Rockstroh 1996 Visually induced gamma—based responses in human electroencephalographic activity—a link to animal studies. Exp Brain Res. 112(1):96–102PubMedCrossRefGoogle Scholar
  42. 42.
    Müller M. M., T. Gruber, A. Keil 2000 Modulation of induced gamma band activity in the human EEG by attention and visual processing. Int. J. Psychophysiol. 38(3):283–300PubMedCrossRefGoogle Scholar
  43. 43.
    Newton M. R., R. J. Greenwood, K. E. Britton, M. Charlesworth, C. C. Nimmon, M. J. Carroll, G. Dolke 1992 A study comparing SPECT with CT and MRI after closed head injury. J. Neurol. Neurosurg. Psychiatry. 55(2):92–94PubMedCrossRefGoogle Scholar
  44. 44.
    Ortuno F., N. Ojeda, J. Arbizu, P. Lopez, J. M. Marti-Climent, I. Penuelas, S. Cervera 2002 Sustained attention in a counting task: normal performance and functional neuroanatomy. Neuroimage. 17(1):411–420PubMedCrossRefGoogle Scholar
  45. 45.
    Pfurtscheller G., F. H. Lopes da Silva 1999 Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110:1842–1857PubMedCrossRefGoogle Scholar
  46. 46.
    Ponsford J., G. Kinsella 1992 Attentional deficits following closed head injury. J. Clin. Exp. Neuropsychol. 14(5):822–838PubMedCrossRefGoogle Scholar
  47. 47.
    Robertson I. H., T. Manly, J. Andrade, B. T. Baddeley, J. Yiend 1997 ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injury and normal subjects. Neuropsychologia. 35(6):747–758PubMedCrossRefGoogle Scholar
  48. 48.
    Sarter M., B. Givens, J. P. Bruno 2001 The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Res. Rev. 35:146–160PubMedCrossRefGoogle Scholar
  49. 49.
    Scheid R., C. Preul, O. Gruber 2003 Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3T. AJNR Am. J. Neuroradiol. 24:1049–1056PubMedGoogle Scholar
  50. 50.
    Scheid R., K. Walther, T. Guthke 2006 Cognitive sequelae of diffuse axonal injury. Arch. Neurol. 63:418–424PubMedCrossRefGoogle Scholar
  51. 51.
    Slewa-Younan S., A. M. Green, I. J. Baguley, K. L. Felmingham, A. R. Haig, E. Gordon 2002 Is ‘gamma’ (40 Hz) synchronous activity disturbed in patients with traumatic brain injury? Clin. Neurophysiol. 113(10):1640–1646PubMedCrossRefGoogle Scholar
  52. 52.
    Smith D. H., D. F. Meaney, W. H. Shull 2003 Diffuse axonal injury in head trauma. J. Head Trauma Rehabil. 18(4):307–326PubMedCrossRefGoogle Scholar
  53. 53.
    Sturm W., A. de Simone, B. J. Krause, K. Specht, V. Hesselmann, I. Radermacher, H. Herzog, L. Tellmann, H. W. Müller-Gärtner, K. Willmes 1999 Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia. 37(7):797–805PubMedCrossRefGoogle Scholar
  54. 54.
    Stuss D. T., P. Ely, H. Hugenholtz, M. T. Richard, S. LaRochelle, C. A. Poirier, I. Bell 1985 Subtle neuropsychological deficits in patients with good recovery after closed head injury. Neurosurgery. 17(1):41–47PubMedCrossRefGoogle Scholar
  55. 55.
    Tallon-Baudry C., O. Bertrand, F. Peronnet, J. Pernier 1998 Induced gamma-band activity during the delay of a visual short-term memory task in humans. J. Neurosci. 18:4244–4254PubMedGoogle Scholar
  56. 56.
    Taveras J., J. Pile-Spellman 1996 “Shear-strain or axonal injury.” In: Taveras J (ed) Neuroradiology. 3 ed. Lippincott, Williams & Wilkins, pp 353–4Google Scholar
  57. 57.
    Thatcher R. W., R. A. Walker, I. Gerson, F. H. Geisler 1989 EEG discriminant analyses of mild head trauma. Electroenceph Clin. Neurophysiol. 73:94–106PubMedCrossRefGoogle Scholar
  58. 58.
    Weissman D. H., Roberts K. C., Visscher K. M., Woldorff M. G. 2006 The neural bases of momentary lapses in attention. Nat. Neurosci. 9(7):971–978PubMedCrossRefGoogle Scholar
  59. 59.
    Zetterberg L. H., L. Kristiansson, K. Mossberg 1978 Performance of a model for a local neuron population. Biol. Cybern. 31:15–26PubMedCrossRefGoogle Scholar
  60. 60.
    Zimmerman R. A., L. T. Bilaniuk, T. Genneralli 1978 Computed tomography of shearing injuries of the cerebral white matter. Radiology. 127(2):393–396PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Erika Molteni
    • 1
  • Anna Maria Bianchi
    • 2
  • Michele Butti
    • 2
  • Gianluigi Reni
    • 1
  • Claudio Zucca
    • 3
  1. 1.Bioengineering LaboratoryIRCCS “E. Medea”LeccoItaly
  2. 2.Department of Biomedical Engineering, IIT unitPolytechnic University of MilanMilanItaly
  3. 3.Clinical Neurophysiology UnitIRCCS “E. Medea”LeccoItaly

Personalised recommendations