Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications

Article

Abstract

Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone in vivo. The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm2. Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.

Keywords

Bone Continuous scaffold Discrete scaffold Hydrostatic compression Shear stress Three-dimensional 

Notes

Acknowledgments

This work was supported by NSF PECASE BES-0093805. The authors would like to thank Clemson University Machining and Technical Services for fabrication of the modular bioreactor components.

References

  1. 1.
    Bancroft G. N., V. I. Sikavitsas, A. G. Mikos. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9(3):549–554, 2003PubMedCrossRefGoogle Scholar
  2. 2.
    Bancroft G. N., V. I. Sikavitsas, J. van den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 99(20):12600–12605, 2002PubMedCrossRefGoogle Scholar
  3. 3.
    Basmadjian D. Mass transfer: principles and applications. New York: CRC Press, 2004Google Scholar
  4. 4.
    Basso N., J. N. M. Heersche. Characteristics of in vitro osteoblastic cell loading models. Bone 30(2):347–351, 2002PubMedCrossRefGoogle Scholar
  5. 5.
    Botchwey E. A., S. R. Pollack, E. M. Levine, C. T. Laurencin. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J. Biomed. Mater. Res. 55(2):242–253, 2001PubMedCrossRefGoogle Scholar
  6. 6.
    Brown T. D. Techniques for mechanical stimulation of cells in vitro: a review. J. Biomech. 33(1):3–14, 2000PubMedCrossRefGoogle Scholar
  7. 7.
    Burger E. H., J. Klein-Nulend. Mechanotransduction in bone–role of the lacuno-canalicular network. FASEB J. 13S:S101–12, 1999Google Scholar
  8. 8.
    Cartmell S. H., B. D. Porter, A. J. Garcia, R. E. Guldberg. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 9(6):1197–1203, 2003PubMedCrossRefGoogle Scholar
  9. 9.
    Dahir G. A., Q. Cui, P. Anderson, C. Simon, C. Joyner, J. T. Triffitt, G. Balian. Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clinical Orthopaedics 379S:S134–145, 2000Google Scholar
  10. 10.
    Diduch D. R., M. R. Coe, C. Joyner, M. E. Owen, G. Balian. Two cell lines from bone marrow that differ in terms of collagen synthesis, osteogenic characteristics, and matrix mineralization. J. Bone Joint Surg. Am. 75(1):92–105, 1993PubMedGoogle Scholar
  11. 11.
    Ducommun P., P. Ruffieux, M. Furter, I. Marison, U. von Stockar. A new method for on-line measurement of the volumetric oxygen uptake rate in membrane aerated animal cell cultures. J. Biotechnol. 78(2):139–47, 2000PubMedCrossRefGoogle Scholar
  12. 12.
    Ergun S. Fluid flow through packed columns. Chem. Eng. Prog. 48(2):89–94, 1952Google Scholar
  13. 13.
    Fournier R. L. Basic transport phenomena in biomedical engineering. Philadelphia: Taylor & Francis, 1999Google Scholar
  14. 14.
    Gramer M. J., D. M. Poeschl. Screening tool for hollow-fiber bioreactor process development. Biotechnol. Prog. 14(2):203–209, 1998PubMedCrossRefGoogle Scholar
  15. 15.
    Halberstadt C., C. Austin, J. Rowley, C. Culberson, A. Loebsack, S. Wyatt, S. Coleman, L. Blacksten, K. Burg, D. Mooney, W. Holder Jr. A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep. Tissue Eng. 8(2):309–319, 2002PubMedCrossRefGoogle Scholar
  16. 16.
    Ingram M., G. B. Techy, R. Saroufeem, O. Yazan, K. S. Narayan, T. J. Goodwin, G. F. Spaulding. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In vitro Cell. Dev. Biol. Anim. 33(6):459–466, 1997PubMedCrossRefGoogle Scholar
  17. 17.
    Klein-Nulend J., A. Vanderplas, C. M. Semeins, N. E. Ajubi, J. A. Frangos, P. J. Nijweide, E. H. Burger. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9(5):441–445, 1995PubMedGoogle Scholar
  18. 18.
    McGlohorn J. B., L. W. Grimes, S. S. Webster, K. J. Burg. Characterization of cellular carriers for use in injectable tissue-engineering composites. J Biomed Mater Res A 66(3):441–9, 2003PubMedCrossRefGoogle Scholar
  19. 19.
    Nagatomi J., B. P. Arulanandam, D. W. Metzger, A. Meunier, R. Bizios. Frequency- and duration-dependent effects of cyclic pressure on select bone cell functions. Tissue Eng. 7(6):717–728, 2001PubMedCrossRefGoogle Scholar
  20. 20.
    Nagatomi J., B. P. Arulanandam, D. W. Metzger, A. Meunier, R. Bizios. Cyclic pressure affects osteoblast functions pertinent to osteogenesis. Ann. Biomed. Eng. 31(8):917–923, 2003PubMedCrossRefGoogle Scholar
  21. 21.
    Nauman E. A., K. J. Risic, T. M. Keaveny, R. L. Satcher. Quantitative assessment of steady and pulsatile flow fields in a parallel plate flow chamber. Ann. Biomed. Eng. 27(2):194–199, 1999PubMedCrossRefGoogle Scholar
  22. 22.
    Nauman E. A., R. L. Satcher, T. M. Keaveny, B. P. Halloran, D. D. Bikle. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J. Appl. Physiol. 90(5):1849–1854, 2001PubMedGoogle Scholar
  23. 23.
    Nilsson J., A. Thorstensson. Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds. Acta Physiol. Scand. 129(1):107–14, 1987PubMedCrossRefGoogle Scholar
  24. 24.
    Obradovic B., R. L. Carrier, G. Vunjak-Novakovic, L. E. Freed. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63(2):197–205, 1999PubMedCrossRefGoogle Scholar
  25. 25.
    Pazzano D., K. A. Mercier, J. M. Moran, S. S. Fong, D. D. DiBiasio, J. X. Rulfs, S. S. Kohles, L. J. Bonassar. Comparison of chondrogenesis in static and perfused bioreactor culture. Biotechnol. Prog. 16(5):893–896, 2000PubMedCrossRefGoogle Scholar
  26. 26.
    Qiu Q. Q., P. Ducheyne, P. S. Ayyaswamy. 3D bone tissue engineered with bioactive microspheres in simulated microgravity. In vitro Cell. Dev. Biol. Anim. 37(3):157–165, 2001PubMedCrossRefGoogle Scholar
  27. 27.
    Roelofsen J., J. Klein-Nulend, E. H. Burger. Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech. 28(12):1493–1503, 1995PubMedCrossRefGoogle Scholar
  28. 28.
    Rubin C. T., K. J. McLeod, S. D. Bain. Functional strains and cortical bone adaptation: epigenetic assurance of skeletal integrity. J. Biomech. 23(Suppl 1):43–54, 1990PubMedCrossRefGoogle Scholar
  29. 29.
    Schakenraad J. M., H. J. Busscher, C. R. Wildevuur, J. Arends. The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. J. Biomed. Mater. Res. 20(6):773–84, 1986PubMedCrossRefGoogle Scholar
  30. 30.
    Scheidegger A. E. The physics of flow through porous media. Toronto: University of Toronto Press, 1974Google Scholar
  31. 31.
    Sherwood T. K., R. L. Pigford, C. R. Wilke. Mass transfer. New York: McGraw-Hill, 1975Google Scholar
  32. 32.
    Sikavitsas V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl. Acad. Sci. U. S. A. 100(25):14683–14688, 2003PubMedCrossRefGoogle Scholar
  33. 33.
    Sodian R., T. Lemke, M. Loebe, S. P. Hoerstrup, E. V. Potapov, H. Hausmann, R. Meyer, R. Hetzer. New pulsatile bioreactor for fabrication of tissue-engineered patches. J. Biomed. Mater. Res. 58(4):401–405, 2001PubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka S. M., J. Li, R. L. Duncan, H. Yokota, D. B. Burr, C. H. Turner. Effects of broad frequency vibration on cultured osteoblasts. J. Biomech. 36(1):73–80, 2003PubMedCrossRefGoogle Scholar
  35. 35.
    Wang L., S. P. Fritton, S. Weinbaum, S. C. Cowin. On bone adaptation due to venous stasis. J. Biomech. 36(10):1439–51, 2003PubMedCrossRefGoogle Scholar
  36. 36.
    Weinbaum S., S. C. Cowin, Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27(3):339–360, 1994PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang D., S. Weinbaum, S. C. Cowin. Estimates of the peak pressures in bone pore water. J. Biomech. Eng. 120(6):697–703, 1998PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang D. J., S. Weinbaum, S. C. Cowin. On the calculation of bone pore water pressure due to mechanical loading. Int. J. Solids Struct. 35(34–35):4981–4997, 1998CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  1. 1.Department of BioengineeringClemson UniversityClemsonUSA

Personalised recommendations