Annals of Biomedical Engineering

, Volume 36, Issue 7, pp 1152–1162 | Cite as

Characterization of Coherent Structures in the Cardiovascular System

  • Shawn C. ShaddenEmail author
  • Charles A. Taylor


Recent advances in blood flow modeling have provided highly resolved, four-dimensional data of fluid mechanics in large vessels. The motivation for such modeling is often to better understand how flow conditions relate to health and disease, or to evaluate interventions that affect, or are affected by, blood flow mechanics. Vessel geometry and the pulsatile pumping of blood leads to complex flow, which is often difficult to characterize. This article discusses a computational method to better characterize blood flow kinematics. In particular, we compute Lagrangian coherent structures (LCS) to study flow in large vessels. We demonstrate that LCS can be used to characterize flow stagnation, flow separation, partitioning of fluid to downstream vasculature, and mechanisms governing stirring and mixing in vascular models. This perspective allows valuable understanding of flow features in large vessels beyond methods traditionally considered.


Hemodynamics Computational fluid dynamics Biofluid mechanics Finite-time Lyapunov exponents Lagrangian coherent structures 



The authors would like to sincerely thank Alison Marsden and Adam Bernstein for the TCPC velocity data and Andrea Les for the patient-specific AAA velocity data. The authors gratefully acknowledge the use of the AcuSolve linear algebra package ( and the MeshSim automatic mesh generator ( S. Shadden was supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship. This work was also supported by the National Institutes of Health (P50 HL083800, U54 GM072970) and the National Science Foundation under Grant No. 0205741.


  1. 1.
    R. J. Adrian. Particle imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23:261–304, 1991.Google Scholar
  2. 2.
    B. K. Bharadvaj, R. F. Mabon, and D. P. Giddens. Steady flow in a model of the human carotid bifurcation. Part I–Flow visualization. Journal of Biomechanics, 15(5):349–362, 1982.PubMedCrossRefGoogle Scholar
  3. 3.
    D. Bluestein, L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Steady flow in an aneurysm model: Correlation between fluid dynamics and blood platelet deposition. Journal of Biomechanical Engineering, 118(3):280–294, 1996.PubMedCrossRefGoogle Scholar
  4. 4.
    C. J. Egelhoff, R. S. Budwig, D. F. Elger, T. A. Khraishi, and K. H. Johansen. Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions. Journal of Biomechanics, 32(12):1319–1329, 1999.PubMedCrossRefGoogle Scholar
  5. 5.
    Fehlberg, E. Low-order classical Runge-Kutta formulas with step size control and their application to some heat transfer problems. NASA Technical Report, 315, 1969.Google Scholar
  6. 6.
    M. Gharib, E. Rambod, and K. Shariff. A universal time scale for vortex ring formation. Journal of Fluid Mechanics, 360:121–140, 1998.CrossRefGoogle Scholar
  7. 7.
    G. Haller. Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D, 149(4):248–277, 2001.CrossRefGoogle Scholar
  8. 8.
    G. Haller and A. C. Poje. Finite time transport in aperiodic flows. Physica D, 119(3–4):352–380, 1998.CrossRefGoogle Scholar
  9. 9.
    K. E. Jansen, C. H. Whiting, and G. M. Hulbert. Generalized-alpha method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(3):305–319, 2000.CrossRefGoogle Scholar
  10. 10.
    H. Justino, L. N. Benson, and R. M. Freedom. Development of unilateral pulmonary arteriovenous malformations due to unequal distribution of hepatic venous flow. Circulation, 103(8):E39–E40, 2001.PubMedGoogle Scholar
  11. 11.
    D. N. Ku and D. P. Giddens. Pulsatile flow in a model carotid bifurcation. Arteriosclerosis, 3(1):31–39, 1983.PubMedGoogle Scholar
  12. 12.
    D. N. Ku, D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque location and low and oscillating shear-stress. Arteriosclerosis, 5(3):293–302, 1985.PubMedGoogle Scholar
  13. 13.
    S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. European Heart Journal, 27(21):2588–2605, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    F. Lekien, S. C. Shadden, and J. E. Marsden. Lagrangian coherent structures in n-dimensional systems. Journal of Mathematical Physics, 48(6):065404, 2007.CrossRefGoogle Scholar
  15. 15.
    M. Markl, F. P. Chan, M. T. Alley, K. L. Wedding, M. T. Draney, C. J. Elkins, D. W. Parker, R. Wicker, C. A. Taylor, R. J. Herfkens, and N. J. Pelc. Time-resolved three-dimensional phase-contrast MRI. Journal of Magnetic Resonance Imaging, 17(4):499–506, 2003.PubMedCrossRefGoogle Scholar
  16. 16.
    Marsden, A. L., A. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. (submitted)Google Scholar
  17. 17.
    A. L. Marsden, I. E. Vignon-Clementel, F. Chan, J. A. Feinstein, and C. A. Taylor. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Annals of Biomedical Engineering, 35(2):250–263, 2007.PubMedCrossRefGoogle Scholar
  18. 18.
    I. Marshall, P. Papathanasopoulou, and K. Wartolowksa. Carotid flow rates and flow division at the bifurcation in healthy volunteers. Physiological Measurement, 25(3):961–967, 2004.CrossRefGoogle Scholar
  19. 19.
    J. E. Moore, C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and relationship to atherosclerosis. Atherosclerosis, 110(2):225–240, 1994.PubMedCrossRefGoogle Scholar
  20. 20.
    J. M. Ottino. The kinematics of mixing: Stretching, chaos, and transport. Cambridge University Press, New York, 1989.Google Scholar
  21. 21.
    R. A. Peattie, T. J. Riehle, and E. I. Bluth. Pulsatile flow in fusiform models of abdominal aortic aneurysms: Flow fields, velocity patterns and flow-induced wall stresses. Journal of Biomechanical Engineering, 126(4):438–446, 2004.PubMedCrossRefGoogle Scholar
  22. 22.
    Pierrehumbert, R. T. Large-scale horizontal mixing in planetary atmospheres. Phys. Fluids A 3(5):1250–1260, 1991.CrossRefGoogle Scholar
  23. 23.
    Sahni, O., J. Muller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195(41–43):5634–5655, 2006.Google Scholar
  24. 24.
    A. V. Salsac, S. R. Sparks, and J. C. Lasheras. Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms. Annals of Vascular Surgery, 18(1):14–21, 2004.PubMedCrossRefGoogle Scholar
  25. 25.
    Shadden, S. C. A dynamical systems approach to unsteady systems. PhD thesis, California Institute of Technology, 2006.Google Scholar
  26. 26.
    S. C. Shadden, J. O. Dabiri, and J. E. Marsden. Lagrangian analysis of fluid transport in empirical vortex rings. Physics of Fluids, 18(4):047105, 2006.CrossRefGoogle Scholar
  27. 27.
    S. C. Shadden, K. Katija, M. Rosenfeld, J. E. Marsden, and J. O. Dabiri. Transport and stirring induced by vortex formation. Journal of Fluid Mechanics, 593:315–331, 2007.CrossRefGoogle Scholar
  28. 28.
    S. C. Shadden, F. Lekien, and J. E. Marsden. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212(3-4):271–304, 2005.CrossRefGoogle Scholar
  29. 29.
    R. L. Spilker, J. Feinstein, D. Parker, V.M. Reddy, and C. A. Taylor. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Annals of Biomedical Engineering, 35(4):546–559, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    C. A. Taylor and M. T. Draney. Experimental and computational methods in cardiovascular fluid mechanics. Annual Review of Fluid Mechanics, 36:197–231, 2004.CrossRefGoogle Scholar
  31. 31.
    C. A. Taylor, M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: Computational techniques in therapeutic decision-making. Computer Aided Surgery, 4(5):231–247, 1999.PubMedCrossRefGoogle Scholar
  32. 32.
    C. A. Taylor, T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering, 158(1-2):155–196, 1998.CrossRefGoogle Scholar
  33. 33.
    C. A. Taylor, T. J. R. Hughes, and C. K. Zarins. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: Relevance to atherosclerosis. Annals of Biomedical Engineering, 26(6):975–987, 1998.PubMedCrossRefGoogle Scholar
  34. 34.
    T. W. Taylor and T. Yamaguchi. Three-dimensional simulation of blood flow in an abdominal aortic aneurysm: Steady and unsteady flow cases. Journal of Biomechanical Engineering, 116(1):89–97, 1994.PubMedCrossRefGoogle Scholar
  35. 35.
    I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteriesComputer Methods in Applied Mechanics and Engineering, 195(29-32):3776–3796, 2006.CrossRefGoogle Scholar
  36. 36.
    Wang, K. C. On the current controversy about unsteady separation. In: Numerical and Physical Aspects of Aerodynamic Flows, edited by T. Cebeci. Springer, 1982.Google Scholar
  37. 37.
    N. Westerhof, F. Bosman, C. J. De Vries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. Journal of Biomechanics, 2(2):121–143, 1969.PubMedCrossRefGoogle Scholar
  38. 38.
    C. H. Whiting and K. E. Jansen. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. International Journal for Numerical Methods in Fluids, 35(1):93–116, 2001.CrossRefGoogle Scholar
  39. 39.
    S. Wiggins. The dynamical systems approach to Langrangian transport in oceanic flows. Annual Review of Fluid Mechanics, 37:295–328, 2005.CrossRefGoogle Scholar
  40. 40.
    N. Wilson, F. R. Arko, and C. A. Taylor. Patient-specific operative planning for aorto-femoral reconstruction procedures. Lecture Notes in Computer Science, 3217:422–429, 2004.Google Scholar
  41. 41.
    N. Wilson, K. Wang, R. Dutton, and C. A. Taylor. A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lecture Notes in Computer Science, 2208:449–456, 2001.CrossRefGoogle Scholar
  42. 42.
    C. K. Zarins, D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis: Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research, 53(4):502–514, 1983.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  1. 1.Department of BioengineeringStanford UniversityStanfordUSA

Personalised recommendations