Measuring Mechanical Properties, Including Isotonic Fatigue, of Fast and Slow MLC/mIgf-1 Transgenic Skeletal Muscle

  • Zaccaria Del Prete
  • Antonio Musarò
  • Emanuele Rizzuto


Contractile properties of fast-twitch (EDL) and slow-twitch (soleus) skeletal muscles were measured in MLC/mIgf-1 transgenic and wild-type mice. MLC/mIgf-1 mice express the local factor mIgf-1 under the transcriptional control of MLC promoter, selectively activated in fast-twitch muscle fibers. Isolated muscles were studied in vitro in both isometric and isotonic conditions. We used a rapid “ad hoc” testing protocol that measured, in a single procedure, contraction time, tetanic force, Hill’s (Fv) curve, power curve and isotonic muscle fatigue. Transgenic soleus muscles did not differ from wild-type with regard to any measured variable. In contrast, transgenic EDL muscles displayed a hypertrophic phenotype, with a mass increase of 29.2% compared to wild-type. Absolute tetanic force increased by 21.5% and absolute maximum power by 34.1%. However, when normalized to muscle cross-sectional area and mass, specific force and normalized power were the same in transgenic and wild-type EDL muscles, revealing that mIgf-1 expression induces a functional hypertrophy without altering fibrotic tissue accumulation. Isotonic fatigue behavior did not differ between transgenic and wild-type muscles, suggesting that the ability of mIgf-1 transgenic muscle to generate a considerable higher absolute power did not affect its resistance to fatigue.


Transgenic muscle Twitch force Isometric and isotonic force Hill’s equation Muscle power measurement Muscle isotonic fatigue measurement 



The authors wish to thank professor Peter Grigg for invaluable discussions about muscle physiology and for polishing the English of the manuscript, and professor Mario Molinaro for his continuous encouragements during the experiments. This research was partially supported by Telethon (grant n. GSP030543) and MDA (grant no. 3986).


  1. 1.
    Ameredes B. T., W. Z. Zhan, Y. S. Prakash, R. Vandenboom, G. C. Sieck. 2000 Power fatigue of the rat diaphragm muscle. J. Appl. Physiol. 89:2215–2219PubMedGoogle Scholar
  2. 2.
    Askew G. N., R. L. Marsh. 1997 The effects of length trajectory on the mechanical power output of mouse skeletal muscles. J. Exp. Biol. 200:3119–3131PubMedGoogle Scholar
  3. 3.
    Askew G. N., R. L. Marsh. 1998 Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length–force effects and velocity-dependent activation and deactivation. J. Exp. Biol. 201:1527–1540PubMedGoogle Scholar
  4. 4.
    Asmussen G., I. Schmalbruch, T. Soukup, D. Pette. 2003 Contractile properties, fiber types, and myosin isoforms in fast and slow muscles of hyperactive Japanese waltzing mice. Exp. Neurol. 184:758–766PubMedCrossRefGoogle Scholar
  5. 5.
    Baratta R. V., M. Solomonow, R. Best, M. Zembo, R. D’Ambrosia. 1995 Force–velocity relations of nine load-moving skeletal muscles. Med. Biol. Eng Comput. 33:537–544PubMedCrossRefGoogle Scholar
  6. 6.
    Barclay C. J. 1996 Mechanical efficiency and fatigue of fast and slow muscles of the mouse. J. Physiol. 497:781–794PubMedGoogle Scholar
  7. 7.
    Barclay C. J. 2005 Modelling diffusive O(2) supply to isolated preparations of mammalian skeletal and cardiac muscle. J. Muscle Res. Cell Motil. 26:225–235PubMedCrossRefGoogle Scholar
  8. 8.
    Barclay C. J., J. K. Constable, C. L. Gibbs. 1993 Energetics of fast- and slow-twitch muscles of the mouse. J. Physiol. 472:61–80PubMedGoogle Scholar
  9. 9.
    Barton E. R., L. Morris, A. Musarò, N. Rosenthal, H. L. Sweeney. 2002 Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J. Cell Biol. 157:137–148PubMedCrossRefGoogle Scholar
  10. 10.
    Bottinelli R., C. Reggiani. 1995 Force–velocity properties and myosin light chain isoform composition of an identified type of skinned fibres from rat skeletal muscle. Pflugers Arch. 429:592–594PubMedCrossRefGoogle Scholar
  11. 11.
    Brooks S. V., J. A. Faulkner. 1988 Contractile properties of skeletal muscles from young, adult and aged mice. J. Physiol. 404:71–82PubMedGoogle Scholar
  12. 12.
    Brussee V., F. Tardif, J. P. Tremblay. 1997 Muscle fibers of mdx mice are more vulnerable to exercise than those of normal mice. Neuromuscul. Disord. 7:487–492PubMedCrossRefGoogle Scholar
  13. 13.
    Caiozzo V. J. 2002 Plasticity of skeletal muscle phenotype: mechanical consequences. Muscle Nerve 26:740–768PubMedCrossRefGoogle Scholar
  14. 14.
    Cummins M. E., R. S. Soomal, N. A. Curtin. 1989 Fatigue of isolated mouse muscle due to isometric tetani and tetani with high power output. Q. J. Exp. Physiol. 74:951–953PubMedGoogle Scholar
  15. 15.
    Dobrowolny G., C. Giacinti, L. Pelosi, C. Nicoletti, N. Winn, L. Barberi, M. Molinaro, N. Rosenthal, A. Musaro. 2005 Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J. Cell Biol. 168:193–199PubMedCrossRefGoogle Scholar
  16. 16.
    Edman K. A. 2005 Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers. J. Exp. Biol. 208:1905–1913PubMedCrossRefGoogle Scholar
  17. 17.
    Edman K. A., C. Caputo, F. Lou. 1993 Depression of tetanic force induced by loaded shortening of frog muscle fibres. J. Physiol. 466:535–552PubMedGoogle Scholar
  18. 18.
    Edman K. A., G. Elzinga, M. I. Noble. 1978 Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J. Physiol. 281:139–155PubMedGoogle Scholar
  19. 19.
    Edman K. A., T. Radzyukevich, B. Kronborg. 2002 Contractile properties of isolated muscle spindles of the frog. J. Physiol. 541:905–916PubMedCrossRefGoogle Scholar
  20. 20.
    Florini J. R., D. Z. Ewton, S. A. Coolican. 1996 Growth hormone and the insulin-like growth factor system in myogenesis. Endocr. Rev. 17:481–517PubMedCrossRefGoogle Scholar
  21. 21.
    Gajdosik R. L. 2001 Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin. Biomech. (Bristol. Avon.) 16:87–101CrossRefGoogle Scholar
  22. 22.
    Gonzalez E., O. Delbono. 2001 Age-dependent fatigue in single intact fast- and slow fibers from mouse EDL and soleus skeletal muscles. Mech. Ageing Dev. 122:1019–1032PubMedCrossRefGoogle Scholar
  23. 23.
    Gonzalez E., O. Delbono. 2001 Recovery from fatigue in fast and slow single intact skeletal muscle fibers from aging mouse. Muscle Nerve 24:1219–1224PubMedCrossRefGoogle Scholar
  24. 24.
    Hamer P. W., J. M. McGeachie, M. J. Davies, M. D. Grounds. 2002 Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J. Anat. 200:69–79PubMedCrossRefGoogle Scholar
  25. 25.
    Herzog W., T. R. Leonard. 1997 Depression of cat soleus-forces following isokinetic shortening. J. Biomech. 30:865–872PubMedCrossRefGoogle Scholar
  26. 26.
    Hill A. V. 1938 The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Ser. B 126:136–195Google Scholar
  27. 27.
    Hill A. V. 1964 The effect of load on the heat of shortening of muscle. Proc. R. Soc. Lond. B Biol. Sci. 159:297–318PubMedCrossRefGoogle Scholar
  28. 28.
    James R. S., J. D. Altringham, D. F. Goldspink. 1995 The mechanical properties of fast and slow skeletal muscles of the mouse in relation to their locomotory function. J. Exp. Biol. 198(Pt 2):491–502PubMedGoogle Scholar
  29. 29.
    James R. S., I. S. Young, V. M. Cox, D. F. Goldspink, J. D. Altringham. 1996 Isometric and isotonic muscle properties as determinants of work loop power output. Pflugers Arch. 432:767–774PubMedCrossRefGoogle Scholar
  30. 30.
    Lapointe B. M., C. H. Cote. 1999 Anesthetics can alter subsequent in vitro assessment of contractility in slow and fast skeletal muscles of rat. Am. J. Physiol. 277:R917–R921PubMedGoogle Scholar
  31. 31.
    Lee K., Y. S. Lee, M. Lee, M. Yamashita, I. Choi. 2004 Mechanics and fatigability of the rat soleus muscle during early reloading. Yonsei Med. J. 45:690–702PubMedGoogle Scholar
  32. 32.
    Lynch G. S., R. T. Hinkle, J. S. Chamberlain, S. V. Brooks, J. A. Faulkner. 2001 Force and power output of fast and slow skeletal muscles from mdx mice 6–28 months old. J. Physiol. 535:591–600 PubMedCrossRefGoogle Scholar
  33. 33.
    Machiels H. A., H. F. Van Der Heijden, L. M. Heunks, P. N. Dekhuijzen. 2001 The effect of hypoxia on shortening contractions in rat diaphragm muscle. Acta Physiol. Scand. 173:313–321PubMedCrossRefGoogle Scholar
  34. 34.
    MacIntosh B. R., S. N. Bryan. 2002 Potentiation of shortening and velocity of shortening during repeated isotonic tetanic contractions in mammalian skeletal muscle. Pflugers Arch. 443:804–812PubMedCrossRefGoogle Scholar
  35. 35.
    MacIntosh B. R., J. C. Willis. 2000 Force–frequency relationship and potentiation in mammalian skeletal muscle. J. Appl. Physiol. 88:2088–2096PubMedGoogle Scholar
  36. 36.
    Martonosi A. N. 2000 Animal electricity, Ca2+ and muscle contraction. A brief history of muscle research. Acta Biochim. Pol. 47:493–516PubMedGoogle Scholar
  37. 37.
    Musarò A., C. Giacinti, G. Borsellino, G. Dobrowolny, L. Pelosi, L. Cairns, S. Ottolenghi, G. Bernardi, G. Cossu, L. Battistini, et al. 2004 Muscle restricted expression of mIGF-1 enhances the recruitment of stem cells during muscle regeneration. Proc. Natl. Acad. Sci. USA 101:1206–1210PubMedCrossRefGoogle Scholar
  38. 38.
    Musaro A., K. McCullagh, A. Paul, L. Houghton, G. Dobrowolny, M. Molinaro, E. R. Barton, H. L. Sweeney, N. Rosenthal. 2001 Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27:195–200PubMedCrossRefGoogle Scholar
  39. 39.
    Norenberg K. M., R. H. Fitts. 2004 Contractile responses of the rat gastrocnemius and soleus muscles to isotonic resistance exercise. J. Appl. Physiol. 97:2322–2332PubMedCrossRefGoogle Scholar
  40. 40.
    Seow C. Y., N. L. Stephens. 1988 Fatigue of mouse diaphragm muscle in isometric and isotonic contractions. J. Appl. Physiol. 64:2388–2393PubMedGoogle Scholar
  41. 41.
    Stewart C. E., P. Rotwein. 1996 Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol. Rev. 76:1005–1026PubMedGoogle Scholar
  42. 42.
    Thaller S., H. Wagner. 2004 The relation between Hill’s equation and individual muscle properties. J. Theor. Biol. 231:319–332PubMedCrossRefGoogle Scholar
  43. 43.
    Vandenboom R., J. D. Hannon, G. C. Sieck. 2002 Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation. J. Physiol. 543:555–566PubMedCrossRefGoogle Scholar
  44. 44.
    Vedsted P., A. H. Larsen, K. Madsen, G. Sjogaard. 2003 Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro. Acta Physiol. Scand. 178:175–186PubMedCrossRefGoogle Scholar
  45. 45.
    Westerblad H., D. G. Allen, J. D. Bruton, F. H. Andrade, J. Lannergren. 1998 Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Acta Physiol. Scand. 162:253–260PubMedCrossRefGoogle Scholar
  46. 46.
    Zhan W. Z., J. F. Watchko, Y. S. Prakash, G. C. Sieck. 1998 Isotonic contractile and fatigue properties of developing rat diaphragm muscle. J. Appl. Physiol. 84:1260–1268PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Zaccaria Del Prete
    • 1
  • Antonio Musarò
    • 2
  • Emanuele Rizzuto
    • 2
  1. 1.Department of Mechanical and Aeronautical EngineeringUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Department of Histology and Medical Embryology, IIMUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations