Annals of Biomedical Engineering

, Volume 36, Issue 6, pp 889–904 | Cite as

Multi-Molecular Gradients of Permissive and Inhibitory Cues Direct Neurite Outgrowth

Article

Abstract

Correct development of neuronal tracts requires the coordination of multiple permissive and inhibitory signals. By generating an in vitro microenvironment using soft lithography and microfluidic techniques, multiple guidance cues can be presented in a spatially defined way. Here we evaluated how neurites of dorsal root ganglia neurons responded to permissive and inhibitory cues presented by substrate-bound molecular gradients. Linear gradients containing inhibitory chondroitin sulfate proteoglycan (CSPG) and/or permissive laminin-1 (LN) were generated as single-cue gradients, parallel double-cue gradients, and opposing double-cue gradients with varying slopes. Neurite growth was analyzed using circular statistical methods, and for all gradients examined, neurons extended neurites toward regions of lower CSPG and higher LN concentrations. Single-cue gradients elicited similarly directed neurite growth responses at the higher concentrations tested for both LN and CSPG, and both gradient slope and fractional concentration change affected neurite growth. When the two contrasting molecular cues were presented together, neurites responded differently depending on the directions of the gradients. Neurite growth on LN-CSPG double gradients of opposite direction was strongly directed, while neurite growth on LN-CSPG double gradients of parallel direction was uniform. These results represent an important step toward understanding how neurite growth is guided by complex microenvironments containing multiple molecular cues.

Keywords

Axon guidance Laminin CSPG Microfluidics 

Notes

Acknowledgments

The authors thank Elise Cheng and Julie Richardson for assistance with gradient experiments, and Elizabeth Deweerd and Helen Buettner for helpful discussion of the manuscript. This work was funded by the Charles H. Hood Foundation, an NSF CAREER grant to DHK, and a Robert and Susan Kaplan fellowship to GNL.

References

  1. 1.
    Adams D. N., Kao E. Y., Hypolite C. L., Distefano M. D., Hu W. S., Letourneau P. C. 2005. Growth cones turn and migrate up an immobilized gradient of the laminin IKVAV peptide. J Neurobiol 62:134–47PubMedCrossRefGoogle Scholar
  2. 2.
    Bagnard D., Lohrum M., Uziel D., Puschel A. W., Bolz J. 1998. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 125:5043–53PubMedGoogle Scholar
  3. 3.
    Bagnard D., Thomasset N., Lohrum M., Puschel A. W., Bolz J. 2000. Spatial distributions of guidance molecules regulate chemorepulsion and chemoattraction of growth cones. J Neurosci 20:1030–5PubMedGoogle Scholar
  4. 4.
    Baier H., Bonhoeffer F. 1992. Axon guidance by gradients of a target-derived component. Science 255:472–5PubMedCrossRefGoogle Scholar
  5. 5.
    Britland, S., C. Perridge, M. Denyer, H. Morgan, A. Curtis, and C. Wilkinson. Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth. Exp. Biol. Online 1, 1996.Google Scholar
  6. 6.
    Cao X., Shoichet M. S. 2001. Defining the concentration gradient of nerve growth factor for guided neurite outgrowth. Neuroscience 103:831–40PubMedCrossRefGoogle Scholar
  7. 7.
    Condic M. L. 2001. Adult Neuronal Regeneration Induced by Transgenic Integrin Expression. J. Neurosci. 21:4782–8PubMedGoogle Scholar
  8. 8.
    Corcoran J., Shroot B., Pizzey J., Maden M. 2000. The role of retinoic acid receptors in neurite outgrowth from different populations of embryonic mouse dorsal root ganglia. J Cell Sci 113:2567–74PubMedGoogle Scholar
  9. 9.
    Davies Y., Lewis D., Fullwood N. J., Nieduszynski I. A., Marcyniuk B., et al. 1999. Proteoglycans on normal and migrating human corneal endothelium. Exp Eye Res 68:303–11PubMedCrossRefGoogle Scholar
  10. 10.
    Dertinger S. K., Jiang X., Li Z., Murthy V. N., Whitesides G. M. 2002. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc Natl Acad Sci U S A 99:12542–7PubMedCrossRefGoogle Scholar
  11. 11.
    Dickson B. J. 2002. Molecular mechanisms of axon guidance. Science 298:1959–64PubMedCrossRefGoogle Scholar
  12. 12.
    Dodla M., Bellamkonda R. V. 2006. Anisotropic scaffolds facilitate enhanced neurite extension in vitro. Journal of Biomedical Materials Research Part A 78A:213–21CrossRefGoogle Scholar
  13. 13.
    Fitch M. T., Doller C., Combs C. K., Landreth G. E., Silver J. 1999. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19:8182–98PubMedGoogle Scholar
  14. 14.
    Goodhill G. J., Baier H. 1998. Axon guidance: stretching gradients to the limit. Neural Comput 10:521–7PubMedCrossRefGoogle Scholar
  15. 15.
    Goodhill G. J., Urbach J. S. 1999. Theoretical analysis of gradient detection by growth cones. J Neurobiol 41:230–41PubMedCrossRefGoogle Scholar
  16. 16.
    Halfter W. 1996. The Behavior of Optic Axons on Substrate Gradients of Retinal Basal Lamina Proteins and Merosin. J. Neurosci. 16:4389–401PubMedGoogle Scholar
  17. 17.
    Herndon M. E., Stipp C. S., Lander A. D. 1999. Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding. Glycobiology 9:143–55PubMedCrossRefGoogle Scholar
  18. 18.
    Hoke A., Silver J. 1996. Proteoglycans and other repulsive molecules in glial boundaries during development and regeneration of the nervous system. Prog Brain Res 108:149–63PubMedCrossRefGoogle Scholar
  19. 19.
    Isbister C. M., Mackenzie P. J., To K. C., O’Connor T. P. 2003. Gradient steepness influences the pathfinding decisions of neuronal growth cones in vivo. J Neurosci 23:193–202PubMedGoogle Scholar
  20. 20.
    Jeon N. L., Dertinger S. K. W., Chiu D. T., Choi I. S., Stroock A. D., Whitesides G. M. 2000. Generation of Solution and Surface Gradients Using Microfluidic Systems. Langmuir 16:8311–6CrossRefGoogle Scholar
  21. 21.
    Kennedy T. E., Serafini T., de la Torre J. R., Tessier-Lavigne M. 1994. Netrins are diffusible chemotrophic factors for commissural axons in the embryonic spinal cord. Cell 78:425–35PubMedCrossRefGoogle Scholar
  22. 22.
    Kuecherer-Ehret A., Graeber M. B., Edgar D., Thoenen H., Kreutzberg G. W. 1990. Immunoelectron microscopic localization of laminin in normal and regenerating mouse sciatic nerve. J Neurocytol 19:101–9PubMedCrossRefGoogle Scholar
  23. 23.
    Landolt R. M., Vaughan L., Winterhalter K. H., Zimmermann D. R. 1995. Versican is selectively expressed in embryonic tissues that act as barriers to neural crest cell migration and axon outgrowth. Development 121:2303–12PubMedGoogle Scholar
  24. 24.
    Liesi P., Hager G., Dodt H. U., Seppala I., Zieglgansberger W. 1995. Domain-specific antibodies against the B2 chain of laminin inhibit neuronal migration in the neonatal rat cerebellum. J Neurosci Res 40:199–206PubMedCrossRefGoogle Scholar
  25. 25.
    Loschinger J., Weth F., Bonhoeffer F. 2000. Reading of concentration gradients by axonal growth cones. Philos Trans R Soc Lond B Biol Sci 355:971–82PubMedCrossRefGoogle Scholar
  26. 26.
    Luckenbill-Edds L. 1997. Laminin and the mechanism of neuronal outgrowth. Brain Res Brain Res Rev 23:1–27PubMedCrossRefGoogle Scholar
  27. 27.
    MacLennan A. J., McLaurin D. L., Marks L., Vinson E. N., Pfeifer M., et al. 1997. Immunohistochemical localization of netrin−1 in the embryonic chick nervous system. J Neurosci 17:5466–79PubMedGoogle Scholar
  28. 28.
    Mardia K., Jupp P. 2000. Directional Statistics. Chichester, England: John Wiley and Sons LtdGoogle Scholar
  29. 29.
    McKenna M. P., Raper J. A. 1988. Growth cone behavior on gradients of substratum bound laminin. Dev Biol 130:232–6PubMedCrossRefGoogle Scholar
  30. 30.
    McLoon S. C., McLoon L. K., Palm S. L., Furcht L. T. 1988. Transient expression of laminin in the optic nerve of the developing rat. J. Neurosci. 8:1981–90PubMedGoogle Scholar
  31. 31.
    Oakley R. A., Tosney K. W. 1991. Peanut agglutinin and chondroitin-6-sulfate are molecular markers for tissues that act as barriers to axon advance in the avian embryo. Dev Biol 147:187–206PubMedCrossRefGoogle Scholar
  32. 32.
    Ramon y Cajal S. 1892. La rétine des vertébrés. Lierre, Belgium: Van InGoogle Scholar
  33. 33.
    Rosentreter S. M., Davenport R. W., Loschinger J., Huf J., Jung J., Bonhoeffer F. 1998. Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules. J Neurobiol 37:541–62PubMedCrossRefGoogle Scholar
  34. 34.
    Rosoff W. J., Urbach J. S., Esrick M. A., McAllister R. G., Richards L. J., Goodhill G. J. 2004. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat Neurosci 7:678–82PubMedCrossRefGoogle Scholar
  35. 35.
    Snow D. M. S. J., Gurwell J. A. 2002. Binding characteristics of chondroitin sulfate proteoglycans and laminin-1, and correlative neurite outgrowth behaviors in a standard tissue culture choice assay. Journal of Neurobiology 51:285–301PubMedCrossRefGoogle Scholar
  36. 36.
    Snow D. M., Lemmon V., Carrino D. A., Caplan A. I., Silver J. 1990. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Experimental Neurology 109:111PubMedCrossRefGoogle Scholar
  37. 37.
    Snow D. M., Letourneau P. C. 1992. Neurite outgrowth on a step gradient of chondroitin sulfate proteoglycan (CS-PG). J Neurobiol 23:322–36PubMedCrossRefGoogle Scholar
  38. 38.
    Song H., Ming G., He Z., Lehmann M., McKerracher L., et al. 1998. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281:1515–8PubMedCrossRefGoogle Scholar
  39. 39.
    Sperry R. W. 1963. Chemoaffinity In The Orderly Growth Of Nerve Fiber Patterns And Connections. Proc Natl Acad Sci U S A 50:703–10PubMedCrossRefGoogle Scholar
  40. 40.
    Tessier-Lavigne M., Goodman C. S. 1996. The molecular biology of axon guidance. Science 274:1123–33PubMedCrossRefGoogle Scholar
  41. 41.
    Tom V. J., Steinmetz M. P., Miller J. H., Doller C. M., Silver J. 2004. Studies on the Development and Behavior of the Dystrophic Growth Cone, the Hallmark of Regeneration Failure, in an In Vitro Model of the Glial Scar and after Spinal Cord Injury. J. Neurosci. 24:6531–9PubMedCrossRefGoogle Scholar
  42. 42.
    Tona A., Perides G., Rahemtulla F., Dahl D. 1993. Extracellular matrix in regenerating rat sciatic nerve: a comparative study on the localization of laminin, hyaluronic acid, and chondroitin sulfate proteoglycans, including versican. J Histochem Cytochem 41:593–9PubMedGoogle Scholar
  43. 43.
    von Philipsborn A. C., Lang S., Loeschinger J., Bernard A., David C., et al. 2006. Growth cone navigation in substrate-bound ephrin gradients. Development 133:2487–95CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  1. 1.Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical EngineeringBrown UniversityProvidenceUSA

Personalised recommendations