Effect of Biopolymers on Structure of Hydroxyapatite and Interfacial Interactions in Biomimetically Synthesized Hydroxyapatite/Biopolymer Nanocomposites

  • Devendra Verma
  • Kalpana S. Katti
  • Dinesh R. Katti
Article

Abstract

The interfacial interaction and effect of biopolymer on crystal structure of hydroxyapatite in biomimetically synthesized nanocomposites, chitosan/hydroxyapatite (ChiHAP50), polygalacturonic acid/hydroxyapatite (PgAHAP50), and chitosan/polygalacturonic acid/hydroxyapatite (ChiPgAHAP50) have been investigated using atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and Rietveld analysis. AFM phase images show nano-sized hydroxyapatite particles uniformly distributed in biopolymer. FTIR spectra indicate that chitosan interacts with hydroxyapatite through NH3+ groups, whereas in polygalacturonic acid/hydroxyapatite, dissociated carboxylate groups (COO) form unidentate chelate with calcium atoms. A change in lattice parameters of hydroxyapatite in all nanocomposites is observed using Rietveld analysis. The increase in lattice parameters was most prominent along c-axis in ChiHAP50 and ChiPgAHAP50 nanocomposites, which was 0.388% and 0.319%, respectively. Comparison between particle sizes of hydroxyapatite, determined from AFM and Rietveld analysis, indicates presence of amorphous phase in hydroxyapatite particles, which is believed to be present at the interface of hydroxyapatite and biopolymer.

Keywords

Hydroxyapatite Chitosan Polygalacturonic acid Nanocomposites 

References

  1. 1.
    Aizenberg J., A. Tkachenko, S. Weiner, L. Addadi, G. Hendler 2001. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819–822PubMedCrossRefGoogle Scholar
  2. 2.
    Belcher A. M., P. K. Hansma, G. D. Stucky, D. E. Morse 1998. First steps in harnessing the potential of biomineralization as a route to new high-performance composite materials. Acta Mater. 46, 733–736CrossRefGoogle Scholar
  3. 3.
    Belcher A. M., X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, D. E. Morse 1996. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56–58CrossRefGoogle Scholar
  4. 4.
    Bhowmik R., K. S. Katti, D. Verma, D. R. Katti 2007. Probing Molecular interactions in bone biomaterials: through molecular dynamics and Fourier transform infrared spectroscopy, Mater. Sci. Eng. C 27, 352–371CrossRefGoogle Scholar
  5. 5.
    Chambin O., G. Dupuis, D. Champion, A. Voilley, Y. Pourcelot 2006. Colon-specific drug delivery: influence of solution reticulation properties upon pectin beads performance. Int. J. Pharma., 321, 86–93CrossRefGoogle Scholar
  6. 6.
    Dalas E., J. K. Kallitsis, P. G. Koutsoukos 1991. Crystallization of hydroxyapatite on polymers. Langmuir 7, 1822–1826CrossRefGoogle Scholar
  7. 7.
    Dang J. M., K. W. Leong 2006. Natural polymers for gene delivery and tissue engineering. Adv. Drug Del. Rev. 58, 487–499CrossRefGoogle Scholar
  8. 8.
    Di Martino A., M. Sittinger, M. V. Risbud 2005. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26, 5983–5990PubMedCrossRefGoogle Scholar
  9. 9.
    DiMasi E., V. M. Patel, M. Sivakumar, M. J. Olszta, Y. P. Yang, L. B. Gower 2002. Polymer-controlled growth rate of an amorphous mineral film nucleated at a fatty acid monolayer. Langmuir 18, 8902–8909CrossRefGoogle Scholar
  10. 10.
    Duplat D., M. Puisségur, L. Bédouet, M. Rousseau, H. Boulzaguet, C. Milet, D. Sellos, A. V. Wormhoudt, E. Lopez 2006. Identification of calconectin, a calcium-binding protein specifically expressed by the mantle of Pinctada margaritifera. FEBS Lett. 580, 2435–2441PubMedCrossRefGoogle Scholar
  11. 11.
    Hall S. R. 2006. Biomimetic synthesis of high-Tc, type-II superconductor nanowires. Adv. Mater. 18, 487–490CrossRefGoogle Scholar
  12. 12.
    Haverty D., S. A. M. Tofail, K. T. Stanton, J. B. McMonagle 2005. Structure and stability of hydroxyapatite: density functional calculation and Rietveld analysis. Phys. Rev. B Condens. Matter Mater. Phys. 71, 1–9Google Scholar
  13. 13.
    Hu H., J. Saniger, J. G. Alejandre, V. M. Castano 1991. Fourier transform infrared spectroscopy studies of the reaction between polyacrylic acid and metal oxides. Mater. Lett. 12, 281–285CrossRefGoogle Scholar
  14. 14.
    Kato K., Y. Eika, Y. Ikada 1997. In situ hydroxyapatite crystallization for the formation of hydroxyapatite/polymer composites. J. Mater. Sci. 32, 5533–5543CrossRefGoogle Scholar
  15. 15.
    Katti K. S., D. R. Katti 2005. Why is nacre so tough and strong? Mater. Sci. Eng. C 26, 1229–1456Google Scholar
  16. 16.
    Katti K. S, D. R. Katti, S. M. Pradhan, A. Bhosle 2005. Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097–1100CrossRefGoogle Scholar
  17. 17.
    Katti K. S., P. Turlapati, D. Verma, R. Bhowmik, P. K. Gujjula, D. R. Katti 2006. Static and dynamic mechanical behavior of hydroxyapatite-polyacrylic acid composites under simulated body fluid. Am. J. Biochem. Biotechnol. 2, 73–79CrossRefGoogle Scholar
  18. 18.
    Liu L., Y. J. Won, P. H. Cooke, D. R. Coffin, M. L. Fishman, K. B. Hicks, P. X. Ma 2004. Pectin/poly(lactide-co-glycolide) composite matrices for biomedical applications. Biomaterials, 25, 3201–3210PubMedCrossRefGoogle Scholar
  19. 19.
    Lu C., L. Qi, J. Ma, H. Cheng, M. Zhang, W. Cao 2004. Controlled growth of micropatterned, oriented calcite films on a self-assembled multilayer film. Langmuir 20, 7378–7380PubMedCrossRefGoogle Scholar
  20. 20.
    Mann S., D. D. Archibald, J. M. Didymus, T. Douglas, B. R. Heywood, F. C. Meldrum, N. J. Reeves 1993. Crystallization at inorganic-organic interfaces: biomaterials and biomimetic synthesis. Science 261, 1286–1292PubMedCrossRefGoogle Scholar
  21. 21.
    Mundargi R. C., S. A. Patil, S. A. Agnihotri, T. M. Aminabhavi 2007. Development of polysaccharide-based colon targeted drug delivery systems for the treatment of amoebiasis. Drug Dev. Ind. Pharm. 33, 255–264PubMedCrossRefGoogle Scholar
  22. 22.
    Nakamoto K. 1997. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B. John Wiley & Sons, New YorkGoogle Scholar
  23. 23.
    Nassif N., N. Pinna, N. Gehrke, M. Antonietti, C. Jäger, H. Cölfen (2005) Amorphous layer around aragonite platelets in nacre. Proc. Natl. Acad. Sci. 102:12653–12655PubMedCrossRefGoogle Scholar
  24. 24.
    Nudelman F., B. A. Gotliv, L. Addadi, S. Weiner 2006. Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol. 153, 176–187PubMedCrossRefGoogle Scholar
  25. 25.
    Oner M., O. Dogan 2005. Inhibitory effect of polyelectrolytes on crystallization kinetics of hydroxyapatite. Prog. Cryst. Growth Character. Mater. 50, 39–51CrossRefGoogle Scholar
  26. 26.
    Pawlak A., M. Mucha 2003. Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta 396, 153–166CrossRefGoogle Scholar
  27. 27.
    Pokroy B., A. N. Fitch, F. Marin, M. Kapon, N. Adir, E. Zolotoyabko 2006. Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules. J. Struct. Biol. 155, 96–103PubMedCrossRefGoogle Scholar
  28. 28.
    Pokroy B., A. N. Fitch, E. Zolotoyabko 2006. The microstructure of biogenic calcite: a view by high-resolution synchrotron powder diffraction. Adv. Mater. 18, 2363–2368CrossRefGoogle Scholar
  29. 29.
    Pokroy B., J. P. Quintana, E. N. Caspi, A. Berner, E. Zolotoyabko 2004. Anisotropic lattice distortions in biogenic aragonite. Nat. Mater. 3, 900–902PubMedCrossRefGoogle Scholar
  30. 30.
    Rodríguez-Navarro A. B., C. CabraldeMelo, N. Batista, N. Morimoto, P. Alvarez-Lloret, M. Ortega-Huertas, V. M. Fuenzalida, J. I. Arias, J. P. Wiff, J. L. Arias 2006. Microstructure and crystallographic-texture of giant barnacle (Austromegabalanus psittacus) shell. J. Struct. Biol. 156, 355–362PubMedCrossRefGoogle Scholar
  31. 31.
    Rousseau M., E. Lopez, P. Stempfle, M. Brendle, L. Franke, A. Guette, R. Naslain, X. Bourrat 2005. Multiscale structure of sheet nacre. Biomaterials 26, 6254–6262PubMedCrossRefGoogle Scholar
  32. 32.
    Tlatlik H., P. Simon, A. Kawska, D. Zahn, R. Kniep 2006. Biomimetic fluorapatite-gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development. Angew. Chem. Int. Ed. 45, 1905–1910CrossRefGoogle Scholar
  33. 33.
    Tsortos A., G. Nancollas 2002. The role of polycarboxylic acids in calcium phosphate mineralization. J. Colloid Interface Sci. 250, 159–167PubMedCrossRefGoogle Scholar
  34. 34.
    Verma D., K. S. Katti, D. R. Katti 2006. Bioactivity in in situ hydroxyapatite-polycaprolactone composites. J. Biomed. Mater. Res. 78A, 772–780CrossRefGoogle Scholar
  35. 35.
    Verma D., K. S. Katti, D. R. Katti 2006. Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy, J. Biomed. Mater. Res. Part A, 77A, 59–66CrossRefGoogle Scholar
  36. 36.
    Verma D., K. S. Katti, D. R. Katti 2006. Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone. Spectrochem. Acta Part A 64, 1051–1057CrossRefGoogle Scholar
  37. 37.
    Verma, D., K. S. Katti, and D. R. Katti, Mechanical response, multilevel structure of biomimetic hydroxyapatite/polygalacturonic acid/chitosan nanocomposites. Mater. Sci. Eng. C 28:399–405, 2008CrossRefGoogle Scholar
  38. 38.
    Volkmer D., M. Harms, L. Gower, A. Ziegler 2005. Morphosynthesis of nacre-type laminated CaCO3 thin films and coatings. Angew. Chem. Int. Ed. 44, 639–644CrossRefGoogle Scholar
  39. 39.
    Weiner S., L. Addadi 1997. Design strategies in mineralized biological materials. J. Mater. Chem. 7, 689–702CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Devendra Verma
    • 1
  • Kalpana S. Katti
    • 1
  • Dinesh R. Katti
    • 1
  1. 1.Department of Civil EngineeringNorth Dakota State UniversityFargoUSA

Personalised recommendations