Advertisement

Annals of Biomedical Engineering

, Volume 36, Issue 5, pp 685–699 | Cite as

The Flow Field along the Entire Length of Mouse Aorta and Primary Branches

  • Yunlong Huo
  • Xiaomei Guo
  • Ghassan S. KassabEmail author
Article

Abstract

There is a spatial disposition to atherosclerosis along the aorta corresponding to regions of flow disturbances. The objective of the present study is to investigate the detailed distribution of hemodynamic parameters (wall shear stress (WSS), spatial gradient of wall shear stress (WSSG), and oscillatory shear index (OSI)) in the entire length of C57BL/6 mouse aorta with all primary branches (from ascending aorta to common iliac bifurcation). The detailed geometrical parameters (e.g., diameter and length of the vessels) were obtained from casts of entire aorta and primary branches of mice. The flow velocity was measured at the inlet of ascending aorta using Doppler flowprobe in mice. The outlet pressure boundary condition was estimated based on scaling law. The continuity and Navier–Stokes equations were solved using three-dimensional finite element method (FEM). The model prediction was tested by comparing the computed flow rate with the flow rate measured just before the common iliac bifurcation, and good agreement was found. It was also found that complex flow patterns occur at bifurcations between main trunk and branches. The major branches of terminal aorta, with the highest proportion of atherosclerosis, have the lowest WSS, and the relatively atherosclerotic-prone aortic arch has much more complex WSS distribution and higher OSI value than other sites. The low WSS coincides with the high OSI, which approximately obeys a power law relationship. Furthermore, the scaling law between flow and diameter holds in the entire aorta and primary branches of mice under pulsatile blood flow conditions. This model will eventually serve to elucidate the causal relation between hemodynamic patterns and atherogenesis in KO mice.

Keywords

Finite element method Wall shear stress Spatial gradient of wall shear stress Oscillatory shear index Flow pattern 

Notes

Acknowledgments

We thank Carlos O. Linares for providing the technical help. This research is supported in part by the National Institute of Health-National Heart, Lung, and Blood Institute Grant 2 R01 HL055554-11.

References

  1. 1.
    Bao X., C. Lu, J. A. Frangos. Mechanism of temporal gradients in shear-induced ERK1/2 activation and proliferation in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 281:H22–H29, 2001PubMedGoogle Scholar
  2. 2.
    Bentzon J. F., C. S. Sondergaard, M. Kassem, E. Falk. Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice. Circulation 116(18):2053–2061, 2007PubMedCrossRefGoogle Scholar
  3. 3.
    Bentzon J. F., C. Weile, C. S. Sondergaard, J. Hindkjaer, M. Kassem, E. Falk. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arterioscler. Thromb. Vasc. Biol. 26(12):2696–702, 2006PubMedCrossRefGoogle Scholar
  4. 4.
    Buchanan J. R. Jr., C. Kleinstreuer, G. A. Truskey, M. Lei. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis 143:27–40, 1999PubMedCrossRefGoogle Scholar
  5. 5.
    Caro C. G., J. M. Fitz-Gerald, R. C. Schroter. Atheroma and arterial wall shear observations, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B. 177:109–159, 1971PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng C., D. Tempel, R. van Haperen, A. van der Baan, F. Grosveld, M. J. Daemen, R. Krams, R. de Crom. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753, 2006PubMedCrossRefGoogle Scholar
  7. 7.
    Debakey M. E., G. M. Lawrie, D. H. Glaeser. Patterns of atherosclerosis and their surgical significance. Annl. Surg. 201:115–131, 1985Google Scholar
  8. 8.
    Feintuch A., P. Ruengsakulrach, A. Lin, J. Zhang, Y. Q. Zhou, J. Bishop, L. Davidson, D. Courtman, F. S. Foster, D. A. Steinman, R. M. Henkelman, C. R. Ethier. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am. J. Physiol. Heart Circ. Physiol. 292:H884–H892, 2007PubMedCrossRefGoogle Scholar
  9. 9.
    Fry D. L. Acute vascular endothelia changes associated with increased blood velocity gradients. Circ. Res. 22:165–197, 1968PubMedGoogle Scholar
  10. 10.
    Greve J. M., A. S. Les, B. T. Tang, M. T. D. Blomme, N. M. Wilson, R. L. Dalman, N. J. Pelc, C. A. Taylor. Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291:H1700–H1708, 2006PubMedCrossRefGoogle Scholar
  11. 11.
    Guo X., Y. Kono, R. Mattrey, G. S. Kassab. Morphometry and strain distribution of the C57BL/6 mouse aorta. Am. J. Physiol. Heart Circ. Physiol. 283:H1829–H1837, 2002PubMedGoogle Scholar
  12. 12.
    Guo X., G. S. Kassab. Variation of mechanical properties along the length of the aorta in C57BL/6 mice. Am. J. Physiol. Heart Circ. Physiol. 285:H2614–H2622, 2003PubMedGoogle Scholar
  13. 13.
    Guo X., G. S. Kassab. Distribution of stress and strain along the porcine aorta and coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 286:H2361–H2368, 2004PubMedCrossRefGoogle Scholar
  14. 14.
    Herrmann R. A., R. A. Malinauskas, G. A. Truskey. Characterization of sites of elevated low density lipoprotein at the intercostals celiac and iliac branches of the rabbit aorta. Arterioscler. Thromb. Vasc. Biol. 14:313–323, 1994Google Scholar
  15. 15.
    Huo Y., G. S. Kassab. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 293:H2959–H2970, 2007PubMedCrossRefGoogle Scholar
  16. 16.
    Huo Y., B. Q. Li. Surface deformation and marangoni convection in electrostatically-positioned droplets of immiscible liquids under microgravity. ASME J. Heat Trans. 128:520–529, 2006CrossRefGoogle Scholar
  17. 17.
    Huo Y., B. Q. Li. Three-dimensional marangoni convection in electrostatically positioned droplets under microgravity. Int. J. Heat Mass Trans. 47:3533–3547, 2004CrossRefGoogle Scholar
  18. 18.
    Janssen B., J. Debets, P. Leenders, J. Smits. Chronic measurement of cardiac output in conscious mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282:R928–R935, 2002PubMedGoogle Scholar
  19. 19.
    Johns C., I. Gavras, D. E. Handy, A. Salomao, H. Gavras. Models of experimental hypertension in mice. Hypertension 28:1064–1069, 1996PubMedGoogle Scholar
  20. 20.
    Kassab G. S. Scaling laws of vascular trees of form and function. Am. J. Physiol. Heart Circ. Physiol. 290:H894–H903, 2006PubMedCrossRefGoogle Scholar
  21. 21.
    Kassab G. S. Design of coronary circulation: a minimum energy hypothesis. Comput. Method Appl. Mech. Eng. 196:3033–3042, 2007CrossRefGoogle Scholar
  22. 22.
    Kassab G. S., C. A. Rider, N. J. Tang, Y. C. Fung. Morphometry of pig coronary arterial trees. Am. J. Physiol. Heart Circ. Physiol. 265:H350–H365, 1993Google Scholar
  23. 23.
    Krivitski N. M., D. Starostin, T. L. Smith. Extracorporeal recording of mouse hemodynamic parameters by ultrasound velocity dilution. ASAIO J. 45:32–36, 1999PubMedCrossRefGoogle Scholar
  24. 24.
    Ku D. N., D. P. Gidden, C. K. Zarins, S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5:293–302, 1985PubMedGoogle Scholar
  25. 25.
    Lu X., G. S. Kassab. Nitric oxide is significantly reduced in ex vivo pig arteries during reverse flow because of increased superoxide production. J. Physiol. 561(20):575–582, 2004PubMedCrossRefGoogle Scholar
  26. 26.
    Malek A. M., S. L. Alper, S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999PubMedCrossRefGoogle Scholar
  27. 27.
    Mattson D. L. Comparison of arterial blood pressure in different strains of mice. Am. J. Hypertens. 14:405–408, 2001PubMedCrossRefGoogle Scholar
  28. 28.
    Moore J. E., C. Xu, S. Glagov, G. K. Zarins, D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110:225–240, 1994PubMedCrossRefGoogle Scholar
  29. 29.
    Murray C. D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9:835–841, 1926CrossRefGoogle Scholar
  30. 30.
    Nakashima Y., A. S. Plump, E. W. Raines, J. L. Breslow, R. Ross. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. Vasc. Biol. 14:133–140, 1992Google Scholar
  31. 31.
    Nichols W. W., M. F. O’Rourke. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. 4th Ed. New York: Oxford University Press, 1998Google Scholar
  32. 32.
    Plump A. S., J. D. Smith, T. Hayek, K. Aalto-Setaa, A. Walsh, J. G. Verstuyft, E. M. Rubbin, J. L. Breslow. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353, 1992PubMedCrossRefGoogle Scholar
  33. 33.
    Pries A. R., D. Neuhaus, P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. Heart Circ. Physiol. 163:H1770–H1778, 1992Google Scholar
  34. 34.
    Schwartz S. M., Z. S. Galis, M. E. Rosendeld, E. Falk. Plaque rupture in humans and mice. Arterioscler. Thromb. Vasc. Biol. 27:705–713, 2007PubMedCrossRefGoogle Scholar
  35. 35.
    Shyy J. Y., S. Chien. Role of integrins in endothelial machanosensing of shear stress. Circ. Res. 91:769–775, 2002PubMedCrossRefGoogle Scholar
  36. 36.
    Suo J., D. E. Ferrara, D. Sorescu, R. E. Guldberg, W. R. Taylor, D. P. Giddens. Hemodynamic shear stress in mouse aortas implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol. 27:346–351, 2007PubMedCrossRefGoogle Scholar
  37. 37.
    Tangirala R. K., E. M. Rubin, W. Palinski. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J. Lipid Res. 36:2320–2328, 1995PubMedGoogle Scholar
  38. 38.
    Traub O., B. C. Berk. Laminar shear stress mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998PubMedGoogle Scholar
  39. 39.
    White C. R., M. Haidekker, X. Bao, J. A. Frangos. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation 103:2508–2513, 2001PubMedGoogle Scholar
  40. 40.
    Zeindler C. M., R. G. Kratky, M. R. Roach. Quantitative measurements of early atherosclerotic lesions on rabbit aortae from vascular casts. Atherosclerosis 76:245–255, 1989PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang S. H., R. L. Reddick, J. A. Piedrahita, N. Maeda. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein. Science 258:468–471, 1992PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Yunlong Huo
    • 1
  • Xiaomei Guo
    • 1
  • Ghassan S. Kassab
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Biomedical EngineeringIUPUIIndianapolisUSA
  2. 2.Department of SurgeryIUPUIIndianapolisUSA
  3. 3.Department of Cellular and Integrative PhysiologyIUPUIIndianapolisUSA

Personalised recommendations