Annals of Biomedical Engineering

, Volume 36, Issue 5, pp 865–876 | Cite as

Functional Modulation of ES-Derived Hepatocyte Lineage Cells via Substrate Compliance Alteration

  • Lulu Li
  • Nripen Sharma
  • Uday Chippada
  • Xue Jiang
  • Rene Schloss
  • Martin L. Yarmush
  • Noshir A. LangranaEmail author


Pluripotent embryonic stem cells represent a promising renewable cell source to generate a variety of differentiated cell types including hepatocyte lineage cells, and may ultimately be incorporated into extracorporeal bioartificial liver devices and cell replacement therapies. Recently, we and others have utilized sodium butyrate to directly differentiate hepatocyte-like cells from murine embryonic stem cells cultured in a monolayer configuration. However, to incorporate stem cell technology into clinical and pharmaceutical applications, and hopefully increase the therapeutic potential of these differentiated cells for liver disease treatment, a major challenge remains in sustaining differentiated functions for an extended period of time in their secondary culture environment. In the present work, we have investigated the use of polyacrylamide hydrogels with defined mechanical compliances as a cell culture platform for improving and/or stabilizing functions of these hepatocyte-like cells. Several functional assays, e.g., urea secretion, intracellular albumin content, and albumin secretion, were performed to characterize hepatic functions of cells on polyacrylamide gels with stiffnesses of 5, 46.6, and 230 kPa. In conjunction with the mechanical and cell morphological characterization, we showed that hepatic functions of sodium butyrate differentiated cells were sustained and further enhanced on compliant substrates. This study promises to offer insights into regulating stem cell differentiation via mechanical stimuli, and assist us with designing a variety of dynamic culture systems for applications in tissue and cellular engineering.


Polyacrylamide hydrogels Substrate compliance Hepatocyte-like cells 



This study was supported by NIH EB-004919. The authors would like to thank Dr. Bernard Yurke and Dr. David Lin for their guidance and expertise inpolyacrylamide gels. The authors would like to thank Mr. Kevin Tang and Ms. DaEun June from the Department of Biomedical Engineering at Rutgers University for their assistance in the project.


  1. 1.
    Amabile P. G., D. S. Wang, E. Y. Kao, J. Lee, C. J. Elkins, E. Yuksel, P. R. Hilfiker, J. M. Waugh, M. D. Dake. Directed migration of smooth muscle cells to engineer plaque-resistant vein grafts. J. Endovasc. Ther. 12(6):667–675, 2005PubMedCrossRefGoogle Scholar
  2. 2.
    Chan C., F. Berthiaume, B. D. Nath, A. W. Tilles, M. Toner, M. L. Yarmush. Hepatic tissue engineering for adjunct and temporary liver support: critical technologies. Liver Transpl. 10(11):1331–1342, 2004PubMedCrossRefGoogle Scholar
  3. 3.
    Dahlke M. H., F. C. Popp, S. Larsen, H. J. Schlitt, J. E. Rasko. Stem cell therapy of the liver—fusion or fiction? Liver Transpl. 10(4):471–479, 2004PubMedCrossRefGoogle Scholar
  4. 4.
    DiPersio C. M., D. A. Jackson, K. S. Zaret. The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol. Cell Biol. 11(9):4405–4414, 1991PubMedGoogle Scholar
  5. 5.
    Discher D. E., P. Janmey, Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005PubMedCrossRefGoogle Scholar
  6. 6.
    Engler A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86(1 Pt 1):617–628, 2004PubMedCrossRefGoogle Scholar
  7. 7.
    Engler A. J., M. A. Griffin, S. Sen, C. G. Bonnemann, H. L. Sweeney, D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166(6):877–887, 2004PubMedCrossRefGoogle Scholar
  8. 8.
    Engler A. J., S. Sen, H. L. Sweeney, D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006PubMedCrossRefGoogle Scholar
  9. 9.
    Flanagan L. A., Y. E. Ju, B. Marg, M. Osterfield, P. A. Janmey. Neurite branching on deformable substrates. Neuroreport 13(18):2411–2415, 2002PubMedCrossRefGoogle Scholar
  10. 10.
    Georges P. C., P. A. Janmey. Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98(4):1547–1553, 2005PubMedCrossRefGoogle Scholar
  11. 11.
    Georges P. C., W. J. Miller, D. F. Meaney, E. S. Sawyer, P. A. Janmey. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90(8):3012–3018, 2006PubMedCrossRefGoogle Scholar
  12. 12.
    Hamazaki T., Y. Iiboshi, M. Oka, P. J. Papst, A. M. Meacham, L. I. Zon, N. Terada. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 497(1):15–19, 2001PubMedCrossRefGoogle Scholar
  13. 13.
    Jiang X., P. C. Georges, B. Li, Y. Du, M. K. Kutzing, M. L. Previtera, N. A. Langrana, B. L. Firestein. Cell growth in response to mechanical stiffness is affected by neuron–astroglia interactions. Open Neurosci. J. 1(1):7–14, 2007Google Scholar
  14. 14.
    Lin, D. C., B. Yurke, and N. A. Langrana. Determining the elastic moduli of reversible gels using the theory of elasticity. In: ASME Summer Bioengineering Conference, Key Biscayne, FL, 2003Google Scholar
  15. 15.
    Lin D. C., B. Yurke, N. A. Langrana. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126(1):104–110, 2004PubMedCrossRefGoogle Scholar
  16. 16.
    Lin D. C., B. Yurke, N. A. Langrana. Use of rigid spherical inclusions in young’s moduli determination: application to DNA-crosslinked gels. J. Biomech. Eng. 127(4):571–579, 2005PubMedCrossRefGoogle Scholar
  17. 17.
    Newsome P. N., M. A. Hussain, N. D. Theise. Hepatic oval cells: helping redefine a paradigm in stem cell biology. Curr. Top. Dev. Biol. 61:1–28, 2004PubMedGoogle Scholar
  18. 18.
    Novik E. I., T. J. Maguire, K. Orlova, R. S. Schloss, M. L. Yarmush. Embryoid body-mediated differentiation of mouse embryonic stem cells along a hepatocyte lineage: insights from gene expression profiles. Tissue Eng. 12(6):1515–1525, 2006PubMedCrossRefGoogle Scholar
  19. 19.
    Pelham R. J. Jr., Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94(25):13661–13665, 1997PubMedCrossRefGoogle Scholar
  20. 20.
    Rambhatla L., C. P. Chiu, P. Kundu, Y. Peng, M. K. Carpenter. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant. 12(1):1–11, 2003PubMedCrossRefGoogle Scholar
  21. 21.
    Semler E. J., P. A. Lancin, A. Dasgupta, P. V. Moghe. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol. Bioeng. 89(3):296–307, 2005PubMedCrossRefGoogle Scholar
  22. 22.
    Semler E. J., P. V. Moghe. Engineering hepatocyte functional fate through growth factor dynamics: the role of cell morphologic priming. Biotechnol. Bioeng. 75(5):510–520, 2001PubMedCrossRefGoogle Scholar
  23. 23.
    Semler E. J., C. S. Ranucci, P. V. Moghe. Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function. Biotechnol. Bioeng. 69(4):359–369, 2000PubMedCrossRefGoogle Scholar
  24. 24.
    Sharma N. S., R. Shikhanovich, R. Schloss, M. L. Yarmush. Sodium butyrate-treated embryonic stem cells yield hepatocyte-like cells expressing a glycolytic phenotype. Biotechnol. Bioeng. 94(6):1053–1063, 2006PubMedCrossRefGoogle Scholar
  25. 25.
    Theise N. D. Liver stem cells: prospects for treatment of inherited and acquired liver diseases. Expert Opin. Biol. Ther. 3(3):403–408, 2003PubMedCrossRefGoogle Scholar
  26. 26.
    Tilles A. W., F. Berthiaume, M. L. Yarmush, R. G. Tompkins, M. Toner. Bioengineering of liver assist devices. J. Hepatobiliary Pancreat. Surg. 9(6):686–696, 2002PubMedCrossRefGoogle Scholar
  27. 27.
    Tilles A. W., F. Berthiaume, M. L. Yarmush, M. Toner. Critical issues in bioartificial liver development. Technol. Health Care 10(3–4):177–186, 2002PubMedGoogle Scholar
  28. 28.
    Wang H. B., M. Dembo, Y. L. Wang. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279(5):C1345–C1350, 2000PubMedGoogle Scholar
  29. 29.
    Wang Y. L., R. J. Pelham Jr. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298:489–496, 1998PubMedGoogle Scholar
  30. 30.
    Yarmush M. L., M. Toner, J. C. Dunn, A. Rotem, A. Hubel, R. G. Tompkins. Hepatic tissue engineering. Development of critical technologies. Ann. NY Acad. Sci. 665:238–252, 1992PubMedCrossRefGoogle Scholar
  31. 31.
    Yeung T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton. 60(1):24–34, 2005PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Lulu Li
    • 1
  • Nripen Sharma
    • 1
  • Uday Chippada
    • 2
  • Xue Jiang
    • 3
  • Rene Schloss
    • 3
  • Martin L. Yarmush
    • 3
  • Noshir A. Langrana
    • 2
    • 3
    Email author
  1. 1.Department of Chemical and Biochemical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Department of Mechanical and Aerospace EngineeringRutgers UniversityPiscatawayUSA
  3. 3.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations