Annals of Biomedical Engineering

, Volume 36, Issue 5, pp 813–820 | Cite as

Hydrostatic Pressure Enhances Chondrogenic Differentiation of Human Bone Marrow Stromal Cells in Osteochondrogenic Medium

  • Diane R. WagnerEmail author
  • Derek P. Lindsey
  • Kelvin W. Li
  • Padmaja Tummala
  • Sheena E. Chandran
  • R. Lane Smith
  • Michael T. Longaker
  • Dennis R. Carter
  • Gary S. Beaupre


This study demonstrated the chondrogenic effect of hydrostatic pressure on human bone marrow stromal cells (MSCs) cultured in a mixed medium containing osteogenic and chondrogenic factors. MSCs seeded in type I collagen sponges were exposed to 1 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for 4 h per day for 10 days, or remained in identical culture conditions but without exposure to pressure. Afterwards, we compared the proteoglycan content of loaded and control cell/scaffold constructs with Alcian blue staining. We also used real-time PCR to evaluate the change in mRNA expression of selected genes associated with chondrogenic and osteogenic differentiation (aggrecan, type I collagen, type II collagen, Runx2 (Cbfa-1), Sox9, and TGF-β1). With the hydrostatic pressure loading regime, proteoglycan staining increased markedly. Correspondingly, the mRNA expression of chondrogenic genes such as aggrecan, type II collagen, and Sox9 increased significantly. We also saw a significant increase in the mRNA expression of type I collagen, but no change in the expression of Runx2 or TGF-β1 mRNA. This study demonstrated that hydrostatic pressure enhanced differentiation of MSCs in the presence of multipotent differentiation factors in vitro, and suggests the critical role that this loading regime may play during cartilage development and regeneration in vivo.


Mechanotransduction Cartilage tissue engineering Collagen scaffold Chondrogenesis 



The work was supported in part by the Department of Veterans Affairs, Veterans Health Administration, Rehabilitation Research and Development Service; Merit Review grant A2723R (PI: G. S. Beaupre; D. R. Carter); and Research Career Scientist awards to G. S. Beaupre and D. R. Carter. This work was also supported in part by NIH DE14526 and the Oak Foundation to M. T. Longaker. We would like to thank Integra LifeSciences for the generous donation of the collagen I scaffolds and Ron Ingram and Jeff Brittan for their support in procuring the scaffolds. The authors thank Dr. Angelie Agarwal for advice on MSC culture and seeding.


  1. 1.
    Angele P., D. Schumann, M. Angele, B. Kinner, C. Englert, R. Hente, B. Fuchtmeier, M. Nerlich, C. Neumann, R. Kujat 2004. Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 41:335–346PubMedGoogle Scholar
  2. 2.
    Angele P., J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen, M. Nerlich, B. Johnstone 2003. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J. Orthop. Res. 21:451–457PubMedCrossRefGoogle Scholar
  3. 3.
    Barbero A., S. Grogan, D. Schafer, M. Heberer, P. Mainil-Varlet, I. Martin 2004). Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr. Cartil. 12:476–484PubMedCrossRefGoogle Scholar
  4. 4.
    Barry F., R. E. Boynton, B. Liu, J. M. Murphy 2001. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res. 268:189–200PubMedCrossRefGoogle Scholar
  5. 5.
    Bell D. M., K. K. Leung, S. C. Wheatley, L. J. Ng, S. Zhou, K. W. Ling, M. H. Sham, P. Koopman, P. P. Tam, K. S. Cheah 1997. Sox9 directly regulates the type-II collagen gene. Nat. Genet. 16:174–178PubMedCrossRefGoogle Scholar
  6. 6.
    Bosnakovski D., M. Mizuno, G. Kim, S. Takagi, M. Okumura, T. Fujinaga 2006. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol. Bioeng. 93:1152–1163PubMedCrossRefGoogle Scholar
  7. 7.
    Campbell J. J., D. A. Lee, D. L. Bader 2006. Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology 43:455–470PubMedGoogle Scholar
  8. 8.
    Carter, D. R., and G. S. Beaupre. Skeletal tissue regeneration. In: Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging and Regeneration. Cambridge, UK: Cambridge University Press, pp. 161–200, 2001Google Scholar
  9. 9.
    Carter, D. R., G. S. Beaupre, N. J. Giori, and J. A. Helms. Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res. 355:S41–55, 1998Google Scholar
  10. 10.
    Centrella M., T. L. McCarthy, E. Canalis 1988. Tumor necrosis factor-alpha inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures. Endocrinology 123:1442–1448PubMedCrossRefGoogle Scholar
  11. 11.
    Chen G., D. Liu, M. Tadokoro, R. Hirochika, H. Ohgushi, J. Tanaka, T. Tateishi 2004. Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold. Biochem. Biophys. Res. Commun. 322:50–55PubMedCrossRefGoogle Scholar
  12. 12.
    Ducy P., R. Zhang, V. Geoffroy, A. L. Ridall, G. Karsenty 1997. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754PubMedCrossRefGoogle Scholar
  13. 13.
    Enomoto H., M. Enomoto-Iwamoto, M. Iwamoto, S. Nomura, M. Himeno, Y. Kitamura, T. Kishimoto, T. Komori 2000. Cbfa1 is a positive regulatory factor in chondrocyte maturation. J. Biol. Chem. 275:8695–8702PubMedCrossRefGoogle Scholar
  14. 14.
    Finger A. R., C. Y. Sargent, K. O. Dulaney, S. H. Bernacki, E. G. Loboa 2007. Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng. 13:1151–1158PubMedCrossRefGoogle Scholar
  15. 15.
    Giori N. J., G. S. Beaupre, D. R. Carter 1993. Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J. Orthop. Res. 11:581–591PubMedCrossRefGoogle Scholar
  16. 16.
    Grinnell F. 2000. Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell. Biol. 10:362–365PubMedCrossRefGoogle Scholar
  17. 17.
    Hayami T., Q. Zhang, Y. Kapila, S. Kapila 2007. Dexamethasone’s enhancement of osteoblastic markers in human periodontal ligament cells is associated with inhibition of collagenase expression. Bone 40:93–104PubMedCrossRefGoogle Scholar
  18. 18.
    Healy C., D. Uwanogho, P. T. Sharpe 1999. Regulation and role of Sox9 in cartilage formation. Dev. Dyn. 215:69–78PubMedCrossRefGoogle Scholar
  19. 19.
    Huang C. Y., K. L. Hagar, L. E. Frost, Y. Sun, H. S. Cheung 2004. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323PubMedCrossRefGoogle Scholar
  20. 20.
    Ikenoue T., M. C. Trindade, M. S. Lee, E. Y. Lin, D. J. Schurman, S. B. Goodman, R. L. Smith 2003. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J. Orthop. Res. 21:110–116PubMedCrossRefGoogle Scholar
  21. 21.
    Johnstone B., T. M. Hering, A. I. Caplan, V. M. Goldberg, J. U. Yoo 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238:265–272PubMedCrossRefGoogle Scholar
  22. 22.
    Kimura, T., N. Yasui, S. Ohsawa, and K. Ono. Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures. Clin. Orthop. Relat. Res. 186:231–239, 1984PubMedGoogle Scholar
  23. 23.
    Kolodney M. S., R. B. Wysolmerski 1992. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J. Cell Biol. 117:73–82PubMedCrossRefGoogle Scholar
  24. 24.
    Kuznetsov S. A., M. H. Mankani, P. G. Robey 2000. Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 70:1780–1787PubMedCrossRefGoogle Scholar
  25. 25.
    Lawrence R. C., C. G. Helmick, F. C. Arnett, R. A. Deyo, D. T. Felson, E. H. Giannini, S. P. Heyse, R. Hirsch, M. C. Hochberg, G. G. Hunder, M. H. Liang, S. R. Pillemer, V. D. Steen, F. Wolfe 1998. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 41:778–799PubMedCrossRefGoogle Scholar
  26. 26.
    Lee C. R., H. A. Breinan, S. Nehrer, M. Spector 2000. Articular cartilage chondrocytes in type I and type II collagen-gag matrices exhibit contractile behavior in vitro. Tissue Eng. 6:555–565PubMedCrossRefGoogle Scholar
  27. 27.
    Lennon D. P., S. E. Haynesworth, R. G. Young, J. E. Dennis, A. I. Caplan 1995. A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp. Cell Res. 219:211–222PubMedCrossRefGoogle Scholar
  28. 28.
    Li K. W., D. P. Lindsey, D. R. Wagner, N. J. Giori, D. J. Schurman, S. B. Goodman, R. L. Smith, D. R. Carter, G. S. Beaupre 2006. Gene regulation ex vivo within a wrap-around tendon. Tissue Eng. 12:2611–2618PubMedCrossRefGoogle Scholar
  29. 29.
    Lieb E., T. Vogel, S. Milz, M. Dauner, M. B. Schulz 2004. Effects of transforming growth factor beta1 on bonelike tissue formation in three-dimensional cell culture. II: osteoblastic differentiation. Tissue Eng. 10:1414–1425PubMedGoogle Scholar
  30. 30.
    Mankin H. J. 1974. The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N. Engl. J. Med. 291:1285–1292PubMedCrossRefGoogle Scholar
  31. 31.
    Massague J. 1990. The transforming growth factor-beta family. Annu. Rev. Cell Biol. 6:597–641PubMedCrossRefGoogle Scholar
  32. 32.
    Mauck R. L., B. A. Byers, X. Yuan, R. S. Tuan 2007. Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3d culture in response to dynamic loading. Biomech. Model Mechanobiol. 6:113–125PubMedCrossRefGoogle Scholar
  33. 33.
    McBeath R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, C. S. Chen 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6:483–495PubMedCrossRefGoogle Scholar
  34. 34.
    Miyanishi, K., M. C. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, D. J. Schurman, and R. L. Smith. Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. Tissue Eng. 12(8):2253–2262, 2006PubMedCrossRefGoogle Scholar
  35. 35.
    Miyanishi, K., M. C. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, D. J. Schurman, and R. L. Smith. Effects of hydrostatic pressure and transforming growth factor-beta3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng. 12(6):1419–1428, 2006PubMedCrossRefGoogle Scholar
  36. 36.
    Mouw J. K., J. T. Connelly, C. G. Wilson, K. E. Michael, M. E. Levenston 2007. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 25:655–663PubMedCrossRefGoogle Scholar
  37. 37.
    Otto F., A. P. Thornell, T. Crompton, A. Denzel, K. C. Gilmour, I. R. Rosewell, G. W. Stamp, R. S. Beddington, S. Mundlos, B. R. Olsen, P. B. Selby, M. J. Owen 1997. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771PubMedCrossRefGoogle Scholar
  38. 38.
    Pauwels, F. Theoretical foundation. In: Biomechanics of the Normal and Diseased Hip: Theoretical Foundation, Technique and Results of Treatment: An atlas. New York: Springer-Verlag, 1976, pp. 1–37Google Scholar
  39. 39.
    Roche S., M. C. Ronziere, D. Herbage, A. M. Freyria 2001. Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering. Biomaterials 22:9–18PubMedCrossRefGoogle Scholar
  40. 40.
    Scherer K., M. Schunke, R. Sellckau, J. Hassenpflug, B. Kurz 2004. The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. Biorheology 41:323–333PubMedGoogle Scholar
  41. 41.
    Shapiro F., S. Koide, M. J. Glimcher 1993. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage J. Bone Joint Surg. Am. 75:532–553PubMedGoogle Scholar
  42. 42.
    Silva W. A. Jr., D. T. Covas, R. A. Panepucci, R. Proto-Siqueira, J. L. Siufi, D. L. Zanette, A. R. Santos, M. A. Zago 2003. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 21:661–669PubMedCrossRefGoogle Scholar
  43. 43.
    Smith R. L., J. Lin, M. C. Trindade, J. Shida, G. Kajiyama, T. Vu, A. R. Hoffman, M. C. van der Meulen, S. B. Goodman, D. J. Schurman, D. R. Carter 2000. Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J. Rehabil. Res. Dev. 37:153–161PubMedGoogle Scholar
  44. 44.
    Smith R. L., S. F. Rusk, B. E. Ellison, P. Wessells, K. Tsuchiya, D. R. Carter, W. E. Caler, L. J. Sandell, D. J. Schurman 1996. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J. Orthop. Res. 14:53–60PubMedCrossRefGoogle Scholar
  45. 45.
    Staples A. K., A. H. Hsieh, J. C. Lotz 2006. Differential Effects of Mechanically and Biologically-Initiated Differentiation of Human Mesenchymal Stem Cell Mechanotransduction. Orthopaedic Research Society, Chicago ILGoogle Scholar
  46. 46.
    Takahashi I., G. H. Nuckolls, K. Takahashi, O. Tanaka, I. Semba, R. Dashner, L. Shum, H. C. Slavkin 1998. Compressive force promotes Sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J. Cell Sci. 111(Pt 14):2067–2076PubMedGoogle Scholar
  47. 47.
    Wang Y., D. J. Blasioli, H. J. Kim, H. S. Kim, D. L. Kaplan 2006. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials 27:4434–4442PubMedCrossRefGoogle Scholar
  48. 48.
    Wassersug R. J. 1976. A procedure for differential staining of cartilage and bone in whole formalin-fixed vertebrates. Stain Technol. 51:131–134PubMedGoogle Scholar
  49. 49.
    Wong M., M. Siegrist, K. Goodwin 2003. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 33:685–693PubMedCrossRefGoogle Scholar
  50. 50.
    Woods A., F. Beier 2006. RhoA/Rock signaling regulates chondrogenesis in a context-dependent manner. J. Biol. Chem. 281:13134–13140PubMedCrossRefGoogle Scholar
  51. 51.
    Yoo, J. U., and B. Johnstone. The role of osteochondral progenitor cells in fracture repair. Clin. Orthop. Relat. Res. 355S:S73–81, 1998PubMedCrossRefGoogle Scholar
  52. 52.
    Zhao Q., H. Eberspaecher, V. Lefebvre, B. De Crombrugghe 1997. Parallel expression of Sox9 and col2a1 in cells undergoing chondrogenesis. Dev. Dyn. 209:377–386PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Diane R. Wagner
    • 1
    • 2
    • 3
    Email author
  • Derek P. Lindsey
    • 4
  • Kelvin W. Li
    • 4
  • Padmaja Tummala
    • 4
  • Sheena E. Chandran
    • 1
  • R. Lane Smith
    • 4
  • Michael T. Longaker
    • 2
  • Dennis R. Carter
    • 1
    • 4
  • Gary S. Beaupre
    • 1
    • 4
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of SurgeryStanford UniversityStanfordUSA
  3. 3.Aerospace and Mechanical EngineeringNotre DameUSA
  4. 4.Bone and Joint Center of Excellence, VA Palo Alto Health Care SystemPalo AltoUSA

Personalised recommendations