Annals of Biomedical Engineering

, Volume 36, Issue 3, pp 467–475

Muscle Artifact Removal from Human Sleep EEG by Using Independent Component Analysis

  • Maite Crespo-Garcia
  • Mercedes Atienza
  • Jose L. Cantero
Article

Abstract

Muscle artifacts are typically associated with sleep arousals and awakenings in normal and pathological sleep, contaminating EEG recordings and distorting quantitative EEG results. Most EEG correction techniques focus on ocular artifacts but little research has been done on removing muscle activity from sleep EEG recordings. The present study was aimed at assessing the performance of four independent component analysis (ICA) algorithms (AMUSE, SOBI, Infomax, and JADE) to separate myogenic activity from EEG during sleep, in order to determine the optimal method. AMUSE, Infomax, and SOBI performed significantly better than JADE at eliminating muscle artifacts over temporal regions, but AMUSE was independent of the signal-to-noise ratio over non-temporal regions and markedly faster than the remaining algorithms. AMUSE was further successful at separating muscle artifacts from spontaneous EEG arousals when applied on a real case during different sleep stages. The low computational cost of AMUSE, and its excellent performance with EEG arousals from different sleep stages supports this ICA algorithm as a valid choice to minimize the influence of muscle artifacts on human sleep EEG recordings.

Keywords

Muscle artifacts Sleep Arousals Awakenings EEG Independent component analysis Blind source separation techniques 

References

  1. 1.
    American Sleep Disorders Association (ASDA). EEG arousals: scoring rules and examples. Sleep 15:173–184, 1992Google Scholar
  2. 2.
    Barlow, J. S. Artifact processing (rejection and minimization) in EEG data processing, In: Handbook of Electroencephalography and Clinical Neurophysiology. Revised series, vol. 2, edited by F. H. Lopes da Silva, W. Storm van Leeuwen, A. Remond. Amsterdam: Elsevier, 1986, pp. 15–62Google Scholar
  3. 3.
    Bell A. J., T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural. Comput. 7:1129–1159, 1995PubMedCrossRefGoogle Scholar
  4. 4.
    Belouchrani A., K. Abed-Meraim, J. F. Cardoso, E. Moulines. A blind source separation technique using second order statistics. IEEE Trans. Signal Process. 45:434–444, 1997CrossRefGoogle Scholar
  5. 5.
    Belouchrani A., A. Cichocki. Robust whitening procedure in blind source separation context. Electron. Lett. 36:2050–2051, 2000CrossRefGoogle Scholar
  6. 6.
    Berg P., M. Scherg. Dipole models of eye activity and its application to the removal of eye artifacts from the EEG ad MEG. Clin. Physiol. Meas. 12:49–54, 2000CrossRefGoogle Scholar
  7. 7.
    Bonnet M. H., D.L. Arand. EEG arousal norms by age. J. Clin. Sleep Med. 3:271–274, 2007PubMedGoogle Scholar
  8. 8.
    Boselli M., L. Parrino, A. Smerieri, M. G. Terzano. Effect of age on EEG arousals in normal sleep. Sleep 21:351–357, 1998PubMedGoogle Scholar
  9. 9.
    Boudet S., L. Peyrodie, P. Gallois, C. Vasseur. A global approach for automatic artifact removal for standard EEG record. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:5719–5722, 2006PubMedGoogle Scholar
  10. 10.
    Brunner D. P., R. C. Vasko, C. S. Detka, J. P. Monahan, C. F. Reynolds, D. J. Kupfer. Muscle artifacts in the sleep EEG: automated detection and effect on all-night EEG power spectra. J. Sleep Res. 5:155–164, 1996PubMedCrossRefGoogle Scholar
  11. 11.
    Cardoso J. F., A. Souloumiac. Blind beam-forming for non gaussian signals. IEEE Proc. Radar Signal Process. 140:362–370, 1993CrossRefGoogle Scholar
  12. 12.
    Cichocki C., S. Amari. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Chichester: John Wiley and Sons, Ltd., 2002Google Scholar
  13. 13.
    Cichocki, C., S. Amari, K. Siwek, and T. Tanaka. ICALAB Toolboxes for Signal and Image Processing. http://www.bsp.brain.riken.go.jp, 2002
  14. 14.
    Cohrs S., T. Rasch, S. Altmeyer, J. Kinkelbur, T. Kostanecka, A. Rothenberger, E. Rüther, G. Hajak. Decreased sleep quality and increased sleep related movements in patients with Tourette’s syndrome. J. Neurol. Neurosurg. Psychiatry 70:192–197, 2001PubMedCrossRefGoogle Scholar
  15. 15.
    Comon P. Independent component analysis, a new concept? Signal Process. 36:287–314, 1994CrossRefGoogle Scholar
  16. 16.
    Croft R. J., J. S. Chandler, R. J. Barry, N. R. Cooper, A. R. Clarke. EOG correction: a comparison of four methods, Psychophysiology 42:16–24, 2005PubMedCrossRefGoogle Scholar
  17. 17.
    Delorme A., S. Makeig. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134:9–21, 2004PubMedCrossRefGoogle Scholar
  18. 18.
    Delorme A., T. Sejnowski, S. Makeig, Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 34:1443–1449, 2007PubMedCrossRefGoogle Scholar
  19. 19.
    Fantini M. L., L. Ferini-Strambi. Idiopathic rapid eye movement sleep behaviour disorder. Neurol. Sci. 1:15–20, 2007CrossRefGoogle Scholar
  20. 20.
    Fatourechi M., A. Bashashati, R. K. Ward, G. E. Birch. EMG and EOG artifacts in brain computer interface systems: a survey. Clin. Neurophysiol. 118:480–494, 2007PubMedCrossRefGoogle Scholar
  21. 21.
    Ferri R., O. Bruni, S. Miano, M. G. Terzano. Topographic mapping of the spectral components of the cyclic alternating pattern (CAP). Sleep Med. 6:29–36, 2005PubMedCrossRefGoogle Scholar
  22. 22.
    Frank R. M., G. A. Frishkoff. Automated protocol for evaluation of electromagnetic component separation (APECS): application of a framework for evaluating statistical methods of blink extraction from multichannel EEG. Clin. Neurophysiol. 118(1):80–97, 2007PubMedCrossRefGoogle Scholar
  23. 23.
    Gasser T., J. C. Schuller, U. S. Gasser. Correction of muscle artifacts in the EEG power spectrum, Clin. Neurophysiol. 116:2044–2050, 2005PubMedCrossRefGoogle Scholar
  24. 24.
    Goncharova I. I., D. J. McFarland, T. M. Vaughan, J. R. Wolpaw. EMG contamination of EEG: spectral and topographical characteristics. Clin. Neurophysiol. 114:1580–1593, 2003PubMedCrossRefGoogle Scholar
  25. 25.
    Gotman J., D. R. Skuce, C. J. Thompson, P. Gloor, J. R. Ives, W. F. Ray. Clinical applications of spectral analysis and extraction of features from electroencephalograms with slow waves in adult patients. Electroencephalogr. Clin. Neurophysiol. 35:225–235, 1973PubMedCrossRefGoogle Scholar
  26. 26.
    Hallez H., A. Vergult, R. Phlypo, P. Van Hese, W. De Clercq, Y. D’Asseler, R. Van de Walle, B. Vanrumste, W. Van Paesschen, S. Van Huffel, I. Lemahieu. Muscle and eye movement artifact removal prior to EEG source localization. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:1002–1005, 2006PubMedGoogle Scholar
  27. 27.
    Hening W. The clinical neurophysiology of the restless legs syndrome and periodic limb movements. Part I: diagnosis, assessment, and characterization. Clin. Neurophysiol. 115:1965–1974, 2004PubMedCrossRefGoogle Scholar
  28. 28.
    Hornyak M., B. Feige, U. Voderholzer, D. Riemann. Spectral analysis of sleep EEG in patients with restless legs syndrome. Clin. Neurophysiol. 116:1265–1272, 2005PubMedCrossRefGoogle Scholar
  29. 29.
    Ikeda T., K. Nishigawa, K. Kondo, H. Takeuchi, G.T. Clark. Criteria for the detection of sleep-associated bruxism in humans. J. Orofac. Pain 10:270–282, 1996PubMedGoogle Scholar
  30. 30.
    Iriarte J., E. Urrestarazu, M. Valencia, M. Alegre, A. Malanda, C. Viteri, J. Artieda. Independent component analysis as a tool to eliminate artefacts in EEG: a quantitative study. J. Clin. Neurophysiol. 20:249–257, 2003PubMedCrossRefGoogle Scholar
  31. 31.
    Jasper H. H. The 10–20 electrode system of the international federation. EEG Clin. Neurophysiol. 10: 371–375, 1958Google Scholar
  32. 32.
    Joyce C. A., I. F. Gorodnitsky, M. Kutas. Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41:313–325, 2004PubMedCrossRefGoogle Scholar
  33. 33.
    Jung T. P., C. Humphries, T. W. Lee, S. Makeig, M. J. McKeown, V. Iragui, T. J. Sejnowski. Extended ICA removes artifacts from electroencephalographic recordings. Adv. Neural Inf. Process. Syst. 10:894–900, 1998Google Scholar
  34. 34.
    Jung T. P., C. Humphries, T.-W. Lee, M. McKeown, V. Iragui, S. Makeig, T. J. Sejnowski. Removing electroencephalographic artifacts: comparison between ICA and PCA, IEEE Int. Workshop Neural Netw. Signal Process. 8:63–72, 1998Google Scholar
  35. 35.
    Jung T. P., S. Makeig, C. Humphries, T. W. Lee, M. J. Mckeown, V. Iragui, T. J. Sejnowski. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37:163–178, 2000PubMedCrossRefGoogle Scholar
  36. 36.
    Karadeniz D., B. Ondze, A. Besset, M. Billiard. EEG arousals and awakenings in relation with periodic leg movements during sleep. J. Sleep Res. 9:273–277, 2000PubMedCrossRefGoogle Scholar
  37. 37.
    Klass D. W. The continuing challenge of artifacts in the EEG. Am. J. EEG Technol. 35:239–269, 1995Google Scholar
  38. 38.
    Lee T. W., M. Girolami, T. J. Sejnowski. Independent component analysis using an extended Infomax algorithm for mixed subgaussian and supergaussian sources. Neural. Comput. 11:417–441, 1999PubMedCrossRefGoogle Scholar
  39. 39.
    Mathur R., N. J. Douglas. Frequency of EEG arousals from nocturnal sleep in normal subjects. Sleep 18:330–333, 1995PubMedGoogle Scholar
  40. 40.
    Rechtschaffen A, A. Kales. A Manual for Standardized Terminology, Technique and Scoring for Sleep Stages of Human Subjects. Los Angeles: Brain Information Service/Brain Research Institute, 1968Google Scholar
  41. 41.
    Schwartz D. J., P. Moxley. On the potential clinical relevance of the length of arousals from sleep in patients with obstructive sleep apnea. J. Clin. Sleep Med. 2:175–180, 2006PubMedGoogle Scholar
  42. 42.
    Smurra M. V., M. Dury, G. Aubert, D. O. Rodenstein, G. Liistro. Sleep fragmentation: comparison of two definitions of short arousals during sleep in OSAS patients. Eur. Respir. J. 17:723–727, 2001PubMedCrossRefGoogle Scholar
  43. 43.
    Stepanski E., J. Lamphere, P. Badia, F. Zorick, T. Roth. Sleep fragmentation and daytime sleepiness. Sleep 7:18–26, 1984PubMedGoogle Scholar
  44. 44.
    Steriade M. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb. Cortex 7:583–604, 1997PubMedCrossRefGoogle Scholar
  45. 45.
    Steriade M., D. A. McCormick, T. J. Sejnowski. Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685, 1993PubMedCrossRefGoogle Scholar
  46. 46.
    Stiasny K., W. H. Oertel, C. Trenkwalder. Clinical symptomatology and treatment of restless legs syndrome and periodic limb movement disorder. Sleep Med. Rev. 6:253–265, 2002PubMedCrossRefGoogle Scholar
  47. 47.
    Swarnkar V., U. R. Abeyratne, C. Hukins. Inter-hemispheric asynchrony of the brain during events of apnoea and EEG arousals. Physiol. Meas. 28(8):869–880, 2007PubMedCrossRefGoogle Scholar
  48. 48.
    Tang A. C., J.-Y. Liu, M. T. Sutherland. Recovery of correlated neuronal sources from EEG: the good and bad ways of using SOBI. NeuroImage 28:507–519, 2005PubMedCrossRefGoogle Scholar
  49. 49.
    Tang A.C., M. T. Sutherland, C. J. McKinney. Validation of SOBI components from high density EEG. NeuroImage 25:539–553, 2005PubMedCrossRefGoogle Scholar
  50. 50.
    Terzaghi, M., I. Sartori, R. Mai, L. Tassi, S. Francione, F. Cardinale, L. Castana, M. Cossu, G. Lorusso, R. Manni, and L. Nobili. Coupling of minor motor events and epileptiform discharges with arousal fluctuations in NFLE. Epilepsia 2007 (in press).Google Scholar
  51. 51.
    Terzano M. G., L. Parrino, M. C. Spaggiari, V. Palomba, M. Rossi, A. Smerieri. CAP variables and arousals as sleep electroencephalogram markers for primary insomnia. Clin. Neurophysiol. 114:1715–1723, 2003PubMedCrossRefGoogle Scholar
  52. 52.
    Ting K. H., P. C. W. Fung, C. Q. Chang, F. H. Y. Chan. Automatic correction of artifact from single-trial event-related potentials by blind source separation using second order statistics only. Med. Eng. Phys. 28:780–794, 2006PubMedCrossRefGoogle Scholar
  53. 53.
    Tong L., Y. Inouye, R. Liu. Waveform-preserving blind estimation of multiple independent sources. IEEE Trans. Signal Process. 41:2461–2470, 1993CrossRefGoogle Scholar
  54. 54.
    Tong L., V. Soon, Y. F. Huang, R. Liu. Indeterminacy and identifiability of blind identification. IEEE Trans. Circuits Syst. 38:499–509, 1991CrossRefGoogle Scholar
  55. 55.
    Tran Y., A. Craig, P. Boord, D. Craig. Using independent component analysis to remove artifact from electroencephalographic measured during stuttered speech. Med. Biol. Eng. Comput. 42:627–633, 2004PubMedCrossRefGoogle Scholar
  56. 56.
    Urrestarazu E., J. Iriarte, M. Alegre, M. Valencia, C. Viteri, J. Artieda. Independent component analisis removing artifacts in ictal recordings. Epilepsia 45:1071–1078, 2004PubMedCrossRefGoogle Scholar
  57. 57.
    Xavier P., K. Behbehani, D. Watenpaugh, J. R. Burk. Detecting electroencephalography variations due to sleep disordered breathing events. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:6097–6100, 2007PubMedGoogle Scholar
  58. 58.
    Zhou W., J. Gotman. Removing eye-movements artifacts from the EEG during the intracarotid amobarbital procedure. Epilepsia 46:409–414, 2005PubMedCrossRefGoogle Scholar
  59. 59.
    Zimmermann R., E. Scharein. MEG and EEG show different sensitivity to myogenic artifacts. Neurol. Clin. Neurophysiol. 2004:78, 2004PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Maite Crespo-Garcia
    • 1
  • Mercedes Atienza
    • 1
  • Jose L. Cantero
    • 1
  1. 1.Laboratory of Functional NeuroscienceUniversity Pablo de OlavideSevilleSpain

Personalised recommendations