Annals of Biomedical Engineering

, Volume 36, Issue 5, pp 801–812

Mode I and Mode III Fractures in Intermediate Zone of Full-Thickness Porcine Temporomandibular Joint Discs

  • Mark W. Beatty
  • Rebecca H. Hohl
  • Jeffrey C. Nickel
  • Laura R. Iwasaki
  • Ramana M. Pidaparti


The aim of this study was to assess the critical energy required to induce flaw propagation in the temporomandibular joint (TMJ) disc when tensile and shear stresses were applied. J-integrals were measured for Mode I and III fractures because excessive tensile and shear stresses promote disc failure. Single edge notch (Mode I) and trouser tear (Mode III) specimens were constructed with flaws oriented parallel to the predominant anteroposteriorly oriented collagen fibers of the TMJ disc. Disks with and without an impulsive pre-load of 3 N s were studied to compare impact-damaged and healthy tissues. Results demonstrated that impulsive loading stiffened the tissues and significantly increased the Mode I fracture energy (JIC) but not Mode III (JIIIC) (p ≤ 0.05). JIC and JIIIC values were similar for undamaged tissues, but JIC values were 2.3 times higher for impulsively loaded tissues (p ≤ 0.05). This suggests that when flaws are introduced through impact, the TMJ disc responds by requiring more energy for tensile flaw extension. This research is a first step towards characterizing the mechanical microenvironment that initiates joint disease. This characterization is essential for successful integration of engineered replacement tissues for damaged TMJs.


Cartilage J-integral Impact damage Fracture mechanics 


  1. 1.
    Adams D. J., K. M. Brosche, J. L. Lewis 2003 Effect of specimen thickness on fracture toughness of bovine patellar cartilage. J. Biomech. Eng., 125(6), 927–929PubMedCrossRefGoogle Scholar
  2. 2.
    Alstergren P., S. Kopp, E. Theodorsson 1999 Synovial fluid sampling from the temporomandibular joint: sample quality criteria and levels of interleukin-1 beta and serotonin. Acta Odontol. Scand., 57(1), 16–22PubMedCrossRefGoogle Scholar
  3. 3.
    ASTM Designation 1938-02. Standard test method for tear-propagation resistance (trouser tear) of plastic film and thin sheeting by a single-tear method. In: ASTM Annual Book of Standards. Philadelphia: American Society for Testing and Materials, 2002, pp. 485–488Google Scholar
  4. 4.
    Ateshian G. A., N. O. Chahine, I. M. Basalo, C. T. Hung 2004 The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. J. Biomech., 37(3), 391–400PubMedCrossRefGoogle Scholar
  5. 5.
    Beatty M. W., J. C. Nickel, L. R. Iwasaki, M. Leiker 2003 Mechanical response of the porcine temporomandibular joint disc to an impact event and repeated tensile loading. J. Orofac. Pain, 17(2), 160–166PubMedGoogle Scholar
  6. 6.
    Chen C. T., N. Burton-Wurster, G. Lust, R. A. Bank, J. M. Tekoppele 1999 Compositional and metabolic changes in damaged cartilage are peak-stress, stress-rate, and loading-duration dependent. J. Orthop. Res., 17(6), 870–879PubMedCrossRefGoogle Scholar
  7. 7.
    Chin-Purcell M. V., J. L. Lewis 1996 Fracture of articular cartilage. J. Biomech. Eng., 118(4), 545–556PubMedCrossRefGoogle Scholar
  8. 8.
    Christensen D. 2001 Moving temporomandibular joint research into the 21st century. TMJ Sci. 1(1), 9–18Google Scholar
  9. 9.
    Felson D. T., Y. Zhang, M. T. Hannan, A. Naimark, B. Weissman, P. Aliabadi, D. Levy 1997 Risk factors for incident radiographic knee osteoarthritis in the elderly: the Framingham Study. Arthritis Rheum., 40(4), 728–733PubMedCrossRefGoogle Scholar
  10. 10.
    Gallo L. M., G. Chiaravalloti, L. R. Iwasaki, J. C. Nickel, S. Palla 2006 Mechanical work during stress-field translation in the human TMJ. J. Dent. Res. 85(11), 1006–1010PubMedGoogle Scholar
  11. 11.
    Herring S. W. 1976 The dynamics of mastication in pigs. Arch. Oral Biol., 21(8), 473–480PubMedCrossRefGoogle Scholar
  12. 12.
    Hohl, R. Flaw Propagation in the Porcine Temporomandibular Joint. Thesis. University of Nebraska Medical Center, 2004, p. 151.Google Scholar
  13. 13.
    Kuboki T., M. Shinoda, M. G. Orsini, A. Yamashita 1997 Viscoelastic properties of the pig temporomandibular joint articular soft tissues of the condyle and disc. J. Dent. Res., 76(11), 1760–1769PubMedGoogle Scholar
  14. 14.
    Kubota E., T. Kubota, J. Matsumoto, T. Shibata, K. I. Murakami 1998 Synovial fluid cytokines and proteinases as markers of temporomandibular joint disease. J. Oral Maxillofac. Surg., 56(2), 192–198PubMedCrossRefGoogle Scholar
  15. 15.
    Landes, J., and J. Begley. The effect of specimen geometry on J IC. In: ASTM STP 514 Fracture Toughness: Proceedings of the 1971 National Symposium on Fracture Mechanics, Part II. Philadelphia: American Society for Testing and Materials, 1971, pp. 24–39Google Scholar
  16. 16.
    Lewis J. L., L. B. Deloria, M. Oyen-Tiesma, R. C. Thompson Jr., M. Ericson, T. R. Oegema Jr 2003 Cell death after cartilage impact occurs around matrix cracks. J. Orthop. Res., 21(5), 881–887PubMedCrossRefGoogle Scholar
  17. 17.
    Mai Y., A. Atkins 1980 Crack stability in fracture toughness testing. J. Strain Anal., 15, 63–74CrossRefGoogle Scholar
  18. 18.
    Morel V., T.M. Quinn 2004 Short-term changes in cell and matrix damage following mechanical injury of articular cartilage explants and modelling of microphysical mediators. Biorheology, 41(3–4), 509–519PubMedGoogle Scholar
  19. 19.
    Nickel J. C., L. R. Iwasaki, D. E. Feely, K. D. Stormberg, M. W. Beatty 2001 The effect of disc thickness and trauma on disc surface friction in the porcine temporomandibular joint. Arch. Oral Biol., 46(2), 155–162PubMedCrossRefGoogle Scholar
  20. 20.
    Nickel J. C., K. R. McLachlan 1994 In vitro measurement of the stress-distribution properties of the pig temporomandibular joint disc. Arch. Oral Biol., 39(5), 439–448PubMedCrossRefGoogle Scholar
  21. 21.
    Nickel J. C., K. R. McLachlan 1994 In vitro measurement of the frictional properties of the temporomandibular joint disc. Arch. Oral Biol., 39(4), 323–331PubMedCrossRefGoogle Scholar
  22. 22.
    Nickel J. C., K. R. McLachlan 1994 An analysis of surface congruity in the growing human temporomandibular joint. Arch. Oral Biol., 39(4), 315–321PubMedCrossRefGoogle Scholar
  23. 23.
    Pullinger A. G., D. A. Seligman, W. K. Solberg 1988 Temporomandibular disorders. Part I: functional status, dentomorphologic features, and sex differences in a nonpatient population. J. Prosthet. Dent., 59(2), 228–235PubMedCrossRefGoogle Scholar
  24. 24.
    Rice J. R. 1968 A path independent integral and the approximate analysis of strain concentration by notches and scratches. Trans. ASME J. Appl. Mech., 90, 379–386Google Scholar
  25. 25.
    Shapiro S., M. Wilk 1965 An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611Google Scholar
  26. 26.
    Sokal, R., and F. Rohlf. Biometry: The Principles and Practice of Statistics in Biological Research, 2nd ed. San Francisco: WH Freeman, 1981, pp. 208–222, 242–262, 419–421.Google Scholar
  27. 27.
    Solberg W. K., M. W. Woo, J. B. Houston 1979 Prevalence of mandibular dysfunction in young adults. J. Am. Dent. Assoc., 98(1), 25–34PubMedGoogle Scholar
  28. 28.
    Srawley, J., and B. Gross. Stress intensity factors for crackline-loaded edge-crack specimens. NASA TN D-3820, 1–19, 1967Google Scholar
  29. 29.
    Stegenga B., L.G. de Bont, G. Boering 1989 Osteoarthrosis as the cause of craniomandibular pain and dysfunction: a unifying concept. J. Oral Maxillofac. Surg., 47(3), 249–256PubMedGoogle Scholar
  30. 30.
    Vingard E., L. Alfredsson, H. Malchau 1997 Osteoarthrosis of the hip in women and its relation to physical load at work and in the home. Ann. Rheum. Dis., 56(5), 293–298PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Mark W. Beatty
    • 1
    • 2
  • Rebecca H. Hohl
    • 3
  • Jeffrey C. Nickel
    • 4
  • Laura R. Iwasaki
    • 4
  • Ramana M. Pidaparti
    • 5
  1. 1.Department of Adult Restorative DentistryUniversity of Nebraska Medical Center College of DentistryLincolnUSA
  2. 2.Department of Oral BiologyUniversity of Nebraska Medical Center College of DentistryLincolnUSA
  3. 3.Department of Growth and DevelopmentUniversity of Nebraska Medical Center College of DentistryLincolnUSA
  4. 4.Department of Oral Biology, Division of Orthodontics, Dentofacial Orthopedics Graduate StudiesUniversity of Missouri – Kansas CityKansas CityUSA
  5. 5.Department of Mechanical EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations