Annals of Biomedical Engineering

, Volume 36, Issue 2, pp 237–243

MMP-1, IL-1β, and COX-2 mRNA Expression is Modulated by Static Load in Rabbit Flexor Tendons

Article

Abstract

Tendon cells respond to their mechanical environment by synthesizing and degrading the surrounding matrix. This study examined how expression of genes associated with tendon degeneration is affected by static loads. Forty flexor tendons from 10 New Zealand White rabbits were harvested and secured in a tissue loading system. A static load of 0, 2, 4, or 6 MPa was applied to tendons for 20 h. MMP-1, IL-1β, COX-2, GAPDH, and 18s mRNA expression was measured by qRT-PCR. MMP-1 expression in tendons loaded to 6 MPa was significantly increased 259% compared to tendons loaded to 4 MPa. Relative to a 0 MPa load, IL-1β expression was inhibited with load at 4 MPa (48%) while COX-2 expression was increased at 6 MPa (219%). A polynomial regression analysis found a significant positive correlation between creep and expression of MMP-1 (R2 = 0.53, p < 0.001) and IL-1β (R2 = 0.55, p < 0.001). The results of this study indicate that moderate load inhibits IL-1β and high load stimulates COX-2 relative to stress shielding. MMP-1 expression is up-regulated with high loads compared to moderate loads. The correlation between creep and expression suggests that the pathway for MMP-1 and IL-1β expression, leading eventually to tendon degeneration, may be regulated by the biomechanical factor creep.

Keywords

Mechanotransduction Overuse injury Organ culture Tendon creep 

References

  1. 1.
    Abiko Y., N. Shimizu, M. Yamaguchi, H. Suzuki, H. Takiguchi. Effect of aging on functional changes of periodontal tissue cells. Ann. Periodontol. 3: 350–369, 1998PubMedGoogle Scholar
  2. 2.
    Archambault J. M., M. Tsuzaki, W. Herzog, A. Banes. Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. J. Orthop. Res. 20(1): 36–39, 2002PubMedCrossRefGoogle Scholar
  3. 3.
    Archambault J. M., J. P. Wiley, R. C. Bray. Exercise loading of tendons and the development of overuse injuries. A review of current literature. Sports Med. 20(2): 77–89, 1995PubMedCrossRefGoogle Scholar
  4. 4.
    Arnoczky S., T. Tian, M. Lavagnino, K. Gardner. Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J. Orthop. Res. 22(2): 328–333, 2004PubMedCrossRefGoogle Scholar
  5. 5.
    Asundi, K., K. Kursa, J. Lotz, and D. Rempel. In vitro system for applying cyclic loads to connective tissues under force or displacement control. Ann. Biomed. Eng. 35:1188–1195, 2007Google Scholar
  6. 6.
    Banes A., M. Tsuzaki, J. Yamamoto, T. Fischer, B. Brigman, T. Brown, L. Miller. Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem. Cell Biol. 73: 349–365, 1995PubMedCrossRefGoogle Scholar
  7. 7.
    Banes A. J., P. Weinhold, X. Yang, M. Tsuzaki, D. Bynum, M. Bottlang, T. Brown. Gap junctions regulate response of tendon cells ex vivo to mechanical loading. Clin. Orthop. Relat. Res. 367: s356–s370, 1999PubMedCrossRefGoogle Scholar
  8. 8.
    Bankers-Fulbright J., K. Kalli, K. McKean. Interleukin-1 signal transduction. Life Sci. 59: 61–83, 1996PubMedCrossRefGoogle Scholar
  9. 9.
    Bernard, B. Musculoskeletal disorders and workplace factors. NIOSH Publication 97-141, 1997Google Scholar
  10. 10.
    Butler D., E. Grood, F. R Noyes, R. F. Zernicke, K. Brackett. Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J. Biomech. 17(8): 579–596, 1984PubMedCrossRefGoogle Scholar
  11. 11.
    Gillroy D. W., A. Tomlinson, D. A. Willoughby. Differential effects of inhibition of isoforms of cyclooxygenase (COX1, COX2) in chronic inflammation. Inflamm. Res. 47: 79–85, 1998CrossRefGoogle Scholar
  12. 12.
    Goldstein S. A., T. J. Armstrong, D. B. Chaffin, L. S. Matthews. Analysis of cumulative strain in tendons and tendon sheaths. J. Biomech. 20: 1–6, 1987PubMedCrossRefGoogle Scholar
  13. 13.
    Hannafin J. A., S. P. Arnoczky, A. Hoonjan, P. A. Torzilli. Effect of stress deprivation and cyclic tensile loading on material and morphological properties of canine flexor digitorum profundus tendon: an in vitro study. J. Orthop. Res. 13: 907–914, 1995PubMedCrossRefGoogle Scholar
  14. 14.
    Hanson K., J. Weiss, J. Barton. Recruitment of tendon crimp with applied tensile strain. J. Biomech. Eng. 124: 72–77, 2002CrossRefGoogle Scholar
  15. 15.
    Ireland D., R. Harral, V. Curry, G. Holloway, R. Hackney, B. Hazleman, G. Riley. Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol. 20: 159–169, 2001PubMedCrossRefGoogle Scholar
  16. 16.
    Jozsa, L., and P. Kannus. In: Human Tendons: Anatomy, Physiology and Pathology. Champaign: Human Kinetics, 1997Google Scholar
  17. 17.
    Koshima H., S. Kondo, S. Mishima, H. R. Choi, H. Shimpo, T. Sakai, N. Ishiguro. Expression of interleukin-1beta, cyclooxygenase-2, and prostaglandin E2 in a rotator cuff tear in rabbits. J. Orthop. Res. 25: 92–97, 2007PubMedCrossRefGoogle Scholar
  18. 18.
    Lavagnino M., S. P. Arnoczky. In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. J. Orthop. Res. 23(5): 1211–1218, 2005PubMedCrossRefGoogle Scholar
  19. 19.
    Lavagnino M., S. P. Arnoczky, M. Egerbacher, K. L. Gardner, M. E. Burns. Isolated fibrillar damage in tendons stimulates local collagenase mRNA expression and protein synthesis. J. Biomech. 39: 2355–2362, 2006PubMedCrossRefGoogle Scholar
  20. 20.
    Lavignino M., S. P. Arnoczky, T. Tian, Z. Vaupel. Effect of amplitude and frequency of cyclic tensile stress on the inhibition of MMP-1 mRNA expression in tendon cells: an in vitro study. Connect. Tissue Res. 44: 181–187, 2003CrossRefGoogle Scholar
  21. 21.
    Majima T., L. L. Marchuk, N. G. Shrive, C. B. Frank, D. A. Hart. In-vitro cyclic tensile loading of an immobilized and mobilized ligament autograft selectively inhibits mRNA levels for collagenase (MMP-1). J. Orthop. Sci. 5(5): 503–510, 2000PubMedCrossRefGoogle Scholar
  22. 22.
    Malaviya P., D. Butler, D. Korvick, F. Proch. In vivo tendon forces correlate with activity level and remain bounded: evidence in a rabbit flexor tendon model. J. Biomech. 31:1043–1049, 1998PubMedCrossRefGoogle Scholar
  23. 23.
    Mansur N. R., K. Meyer-Siegler, J. C. Wurzer, M. A. Sirover. Cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in normal human cells. Nucleic Acid Res. 21(4): 993–998, 1993PubMedCrossRefGoogle Scholar
  24. 24.
    Matrisian L. M. Metalloproteinases and their inhibitors in matrix remodeling. TIG 6: 121–125, 1990PubMedGoogle Scholar
  25. 25.
    Narumiya S., Y. Sugimoto, F. Ushikubi. Prostanoid receptors: structures, properties, and functions. Physiol. Rev. 79: 1193–1226, 1999PubMedGoogle Scholar
  26. 26.
    Okuda Y., J. P. Gorski, K. N. An, P. C. Amadio. Biochemical, histological and biomechanical analyses of canine tendon. J. Orthop. Res. 5: 60–68, 1987PubMedCrossRefGoogle Scholar
  27. 27.
    Perry S., S. McIlhenny, M. Hoffman, L. Soslowsky. Inflammatory and angiogenic mRNA levels are altered in a supraspinatus tendon overuse animal model. J. Shoulder Elbow Surg. 14(1 Suppl S): 79S–83S, 2005PubMedCrossRefGoogle Scholar
  28. 28.
    Riley G. P., V. Curry, J. DeGroot, B. van El, N. Verzijl, B. L. Hazleman, R. A. Bank. Matrix metalloproteinase activities and their relationship with collagen remodeling in tendon pathology. Matrix Biol. 21: 185–195, 2002PubMedCrossRefGoogle Scholar
  29. 29.
    Screen H., D. Lee, D. Bader, J. Shelton. An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc. Inst. Mech. Eng. [H] 218(2): 109–119, 2004Google Scholar
  30. 30.
    Slack C., M. H. Flint, B. M. Thompson. The effect of tensional load on isolated embryonic chick tendons in organ culture. Connect. Tissue Res. 12: 229–247, 1984PubMedCrossRefGoogle Scholar
  31. 31.
    Thornton G. M., N. G. Shrive, C. B. Frank. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model. J. Orthop. Res. 20(5): 967–974, 2002PubMedCrossRefGoogle Scholar
  32. 32.
    Tsuzaki M., D. Bynum, L. Almekinders, X. Yang, J. Faber, A. J. Banes. ATP modulates load-inducible IL-1 beta, COX 2, and MMP-3 gene expression in human tendon cells. J. Cell Biochem. 89(3): 556–562, 2003PubMedCrossRefGoogle Scholar
  33. 33.
    Tsuzaki M., G. Guyton, W. Garrett, J. M. Archambault, W. Herzog, L. Almekinders, D. Bynum, X. Yang, A. J. Banes. IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J. Orthop. Res. 21(2): 256–264, 2003PubMedCrossRefGoogle Scholar
  34. 34.
    Uchida H., H. Tohyama, K. Nagashima, Y. Ohba, H. Matsumoto, Y. Toyama, K. Yasuda. Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon. J. Biomech. 38: 791–798, 2005PubMedCrossRefGoogle Scholar
  35. 35.
    Wang J. H. Mechanobiology of tendons. J. Biomech. 39: 1563–1582, 2006PubMedCrossRefGoogle Scholar
  36. 36.
    Wang J. H., F. Jia, G. Yang, S. Yang, B. Campbell, D. Stone, S. L. Woo. Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect. Tissue Res. 44: 128–133, 2003PubMedCrossRefGoogle Scholar
  37. 37.
    Wang X., R. F. Ker. Creep rupture of wallaby tail tendons. J. Exp. Biol. 198: 831–845, 1995PubMedGoogle Scholar
  38. 38.
    Wang X., R. F. Ker, R. M. Alexander. Fatigue rupture of wallaby tail tendons. J. Exp. Biol. 198: 847–852, 1995PubMedGoogle Scholar
  39. 39.
    Wren T. A., D. P. Lindsey, G. S. Beaupre, D. R. Carter. Effects of creep and cyclic loading on the mechanical properties and failure of human Achilles tendons. Ann. Biomed. Eng. 31: 710–717, 2003PubMedCrossRefGoogle Scholar
  40. 40.
    Yang G., H. J. Im, J. H. Wang. Repetitive mechanical stretching modulates IL-1 beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene 363: 166–172, 2005PubMedCrossRefGoogle Scholar
  41. 41.
    Zernicke R. F., D. L. Butler, E. S. Grood, M. S. Hefzy. Strain topography of human tendon and fascia. J. Biomech. Eng. 106: 177–180, 1984PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  1. 1.Ergonomics Program, Department of BioengineeringUniversity of California, BerkeleyRichmondUSA

Personalised recommendations