Advertisement

Annals of Biomedical Engineering

, Volume 36, Issue 2, pp 185–194 | Cite as

Regulatory Effects of Mechanical Strain on the Chondrogenic Differentiation of MSCs in a Collagen-GAG Scaffold: Experimental and Computational Analysis

  • Louise A. McMahon
  • Alan J. Reid
  • Veronica A. Campbell
  • Patrick J. PrendergastEmail author
Article

Abstract

The effective treatment of cartilage defects by tissue engineering requires an improved understanding of the effect of mechanical forces on cell differentiation within three-dimensional (3D) matrices. The objective of this study was to investigate the effects of mechanical constraint and cyclic tensile strain on the chondrogenic differentiation of mesenchymal stem cells (MSCs) in a 3D collagen type I-glycosaminoglycan (GAG) scaffold. A multi-station uniaxial stretching bioreactor was fabricated to facilitate application of cyclic strain to the constructs cultured in a chondrogenic medium. Mechanical constraint, created by uniaxial clamping, prevented the cell-mediated contraction of the scaffolds and resulted in a reduction in the rate of GAG synthesis as measured by [35S] sulfate incorporation relative to unconstrained controls. However, the rate of GAG synthesis was increased following application of continuous 10% cyclic tensile loading at 1 Hz for 7 days. A poroelastic finite element analysis of the 3D scaffold computed a maximum fluid flow of 19 μm/s and maximum principal strains of 8% under 10% stretch suggesting these magnitudes were sufficient to mechano-regulate the chondrogenic differentiation process.

Keywords

Chondrogenic differentiation Mesenchymal stem cells Collagen-GAG scaffold Mechanoregulation Tensile strain Computational analysis 

Notes

Acknowledgments

This work was funded by the Irish Research Council for Science, Engineering and Technology: funded by the National Development Plan and by the Programme for Research in Third Level Institutions (Trinity Centre for Bioengineering) administered by the Higher Education Authority, Ireland. The authors would like to thank Dr. Fergal O’Brien and Mr. Matthew Haugh (RCSI, Dublin) and Integra for their generous donation of the scaffolds, Mr. Gabriel Nicholson (Trinity Centre for Bioengineering) for the fabrication of the multi-station bioreactor, and Dr. Thomas Connor and Ms. Noreen Boyle (Trinity College Institute of Neuroscience, Trinity College), for their advice on flow cytometry.

References

  1. 1.
    Angele P., D. Schumann, M. Angele, B. Kinner, C. Englert, R. Hente, B. Fuchtmeier, M. Nerlich, C. Neumann, R. Kujat 2004 Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 41(3–4), 335–346PubMedGoogle Scholar
  2. 2.
    Angele P., J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen, M. Nerlich, B. Johnstone 2003 Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21(3), 451–457PubMedCrossRefGoogle Scholar
  3. 3.
    Awad H. A., M. Q. Wickham, H. A. Leddy, J. M. Gimble, F. Guilak 2004 Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16), 3211–3222PubMedCrossRefGoogle Scholar
  4. 4.
    Bartlett W., J. A. Skinner, C. R. Gooding, R. W. Carrington, A. M. Flanagan, T. W. Briggs, G. Bentley 2005 Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87(5), 640–645PubMedCrossRefGoogle Scholar
  5. 5.
    Behrens P., T. Bitter, B. Kurz, M. Russlies 2006 Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)–5-year follow-up. Knee 13(3), 194–202PubMedCrossRefGoogle Scholar
  6. 6.
    Brennan M. 1991 Fibrin glue. Blood Rev. 5(4), 240–244PubMedCrossRefGoogle Scholar
  7. 7.
    Buschmann M. D., Y. A. Gluzband, A. J. Grodzinsky, E. B. Hunziker 1995 Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108(Pt 4), 1497–1508PubMedGoogle Scholar
  8. 8.
    Buschmann M. D., Y. J. Kim, M. Wong, E. Frank, E. B. Hunziker, A. J. Grodzinsky 1999 Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch Biochem Biophys 366(1), 1–7PubMedCrossRefGoogle Scholar
  9. 9.
    Byrne D. P., D. Lacroix, J. A. Planell, D. J. Kelly, P. J. Prendergast 2007 Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering. Biomaterials 28(36), 5544–5554PubMedCrossRefGoogle Scholar
  10. 10.
    Campbell J. J., D. A. Lee, D. L. Bader 2006 Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology 43(3–4), 455–470PubMedGoogle Scholar
  11. 11.
    Carter D. R., P. R. Blenman, G. S. Beaupre 1988 Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6(5), 736–748PubMedCrossRefGoogle Scholar
  12. 12.
    Claes L. E., C. A. Heigele 1999 Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32(3), 255–266PubMedCrossRefGoogle Scholar
  13. 13.
    Claes, L. E., C. A. Heigele, C. Neidlinger-Wilke, D. Kaspar, W. Seidl, K. J. Margevicius, and P. Augat. Effects of mechanical factors on the fracture healing process. Clin. Orthop. Relat. Res. (355 Suppl):S132–S147, 1998Google Scholar
  14. 14.
    Connelly J. T., E. J. Vanderploeg, M. E. Levenston 2004 The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses. Biorheology 41(3–4), 377–387PubMedGoogle Scholar
  15. 15.
    Darling E. M., K. A. Athanasiou 2003 Articular cartilage bioreactors and bioprocesses. Tissue Eng 9(1), 9–26PubMedCrossRefGoogle Scholar
  16. 16.
    Davisson T., R. L. Sah, A. Ratcliffe 2002 Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng 8(5), 807–816PubMedCrossRefGoogle Scholar
  17. 17.
    Dorotka R., U. Bindreiter, K. Macfelda, U. Windberger, S. Nehrer 2005 Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis Cartilage 13(8), 655–664PubMedCrossRefGoogle Scholar
  18. 18.
    Farrell E., F. J. O’Brien, P. Doyle, J. Fischer, I. Yannas, B. A. Harley, B. O’Connell, P. J. Prendergast, V. A. Campbell 2006 A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng 12(3), 459–468PubMedCrossRefGoogle Scholar
  19. 19.
    Galois L., S. Hutasse, D. Cortial, C. F. Rousseau, L. Grossin, M. C. Ronziere, D. Herbage, A. M. Freyria 2006 Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials 27(1), 79–90PubMedCrossRefGoogle Scholar
  20. 20.
    Harley, B. A., J. H. Leung, E. C. Silva, and L. J. Gibson. Mechanical characterization of collagen-glycosaminoglycan scaffolds. Acta Biomater. 3(4):463–474, 2007PubMedCrossRefGoogle Scholar
  21. 21.
    Huang C. Y., K. L. Hagar, L. E. Frost, Y. Sun, H. S. Cheung 2004 Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22(3), 313–323PubMedCrossRefGoogle Scholar
  22. 22.
    Huang C. Y., P. M. Reuben, H. S. Cheung 2005 Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 23(8), 1113–1121PubMedCrossRefGoogle Scholar
  23. 23.
    Jager M., R. Krauspe 2007 Antigen expression of cord blood derived stem cells under osteogenic stimulation in vitro. Cell Biol Int 31(9), 950–957PubMedCrossRefGoogle Scholar
  24. 24.
    Kelly D. J., P. J. Prendergast 2005 Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J Biomech 38(7), 1413–1422PubMedCrossRefGoogle Scholar
  25. 25.
    Kelly D. J., P. J. Prendergast 2006 Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12(9), 2509–2519PubMedCrossRefGoogle Scholar
  26. 26.
    Kim Y. J., R. L. Sah, J. Y. Doong, A. J. Grodzinsky 1988 Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174(1), 168–176PubMedCrossRefGoogle Scholar
  27. 27.
    Kinnaird T., E. Stabile, M. S. Burnett, M. Shou, C. W. Lee, S. Barr, S. Fuchs, S. E. Epstein 2004 Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12), 1543–1549PubMedCrossRefGoogle Scholar
  28. 28.
    Kirilak Y., N. J. Pavlos, C. R. Willers, R. Han, H. Feng, J. Xu, N. Asokananthan, G. A. Stewart, P. Henry, D. Wood, M. H. Zheng 2006 Fibrin sealant promotes migration and proliferation of human articular chondrocytes: possible involvement of thrombin and protease-activated receptors. Int J Mol Med 17(4), 551–558PubMedGoogle Scholar
  29. 29.
    Korhonen R. K., M. S. Laasanen, J. Toyras, J. Rieppo, J. Hirvonen, H. J. Helminen, J. S. Jurvelin 2002 Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35(7), 903–909PubMedCrossRefGoogle Scholar
  30. 30.
    Kuroda, R., K. Ishida, T. Matsumoto, T. Akisue, H. Fujioka, K. Mizuno, H. Ohgushi, S. Wakitani, and M. Kurosaka. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr. Cartil. 15(2):226–231, 2006PubMedCrossRefGoogle Scholar
  31. 31.
    Lacroix D., P. J. Prendergast, G. Li, D. Marsh 2002 Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40(1), 14–21PubMedCrossRefGoogle Scholar
  32. 32.
    Lee C. R., H. A. Breinan, S. Nehrer, M. Spector 2000 Articular cartilage chondrocytes in type I and type II collagen-GAG matrices exhibit contractile behavior in vitro. Tissue Eng 6(5), 555–565PubMedCrossRefGoogle Scholar
  33. 33.
    Lee C. R., A. J. Grodzinsky, M. Spector 2003 Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J Biomed Mater Res A 64(3), 560–569PubMedCrossRefGoogle Scholar
  34. 34.
    Marlovits S., P. Singer, P. Zeller, I. Mandl, J. Haller, S. Trattnig 2006 Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57(1), 16–23PubMedCrossRefGoogle Scholar
  35. 35.
    Marlovits S., G. Striessnig, F. Kutscha-Lissberg, C. Resinger, S. M. Aldrian, V. Vecsei, S. Trattnig 2005 Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle. Knee Surg Sports Traumatol Arthrosc 13(6), 451–457PubMedCrossRefGoogle Scholar
  36. 36.
    Mauck R. L., B. A. Byers, X. Yuan, R. S. Tuan 2007 Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech Model Mechanobiol 6(1–2), 113–125PubMedCrossRefGoogle Scholar
  37. 37.
    Mauck R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, G. A. Ateshian 2000 Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122(3), 252–260PubMedCrossRefGoogle Scholar
  38. 38.
    McMahon, L. A., V. A. Campbell, and P. J. Prendergast. Differentiation of mesenchymal stem cells along the chondrogenic and osteogenic lineages in a collagen-GAG scaffold under static and dynamic conditions. Paper presented at: Proceedings of the ASME Summer Bioengineering Conference, Paper 151938; 21–25 June, 2006; Amelia Island Plantation, FloridaGoogle Scholar
  39. 39.
    Miyanishi K., M. C. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, D. J. Schurman, R. L. Smith 2006 Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 12(6), 1419–1428PubMedCrossRefGoogle Scholar
  40. 40.
    Nehrer S., H. A. Breinan, A. Ramappa, H. P. Hsu, T. Minas, S. Shortkroff, C. B. Sledge, I. V. Yannas, M. Spector 1998 Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 19(24), 2313–2328PubMedCrossRefGoogle Scholar
  41. 41.
    Nehrer S., H. A. Breinan, A. Ramappa, G. Young, S. Shortkroff, L. K. Louie, C. B. Sledge, I. V. Yannas, M. Spector 1997 Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 18(11), 769–776PubMedCrossRefGoogle Scholar
  42. 42.
    O’Brien F. J., B. A. Harley, M. A. Waller, I. V. Yannas, L. J. Gibson, P. J. Prendergast 2007 The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol Health Care 15(1), 3–17PubMedGoogle Scholar
  43. 43.
    O’Brien F. J., B. A. Harley, I. V. Yannas, L. Gibson 2004 Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25(6), 1077–1086PubMedCrossRefGoogle Scholar
  44. 44.
    O’Brien F. J., B. A. Harley, I. V. Yannas, L. J. Gibson 2005 The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4), 433–441PubMedCrossRefGoogle Scholar
  45. 45.
    Obradovic B., I. Martin, R. F. Padera, S. Treppo, L. E. Freed, G. Vunjak-Novakovic 2001 Integration of engineered cartilage. J Orthop Res 19(6), 1089–1097PubMedCrossRefGoogle Scholar
  46. 46.
    Pazzano D., K. A. Mercier, J. M. Moran, S. S. Fong, D. D. DiBiasio, J. X. Rulfs, S. S. Kohles, L. J. Bonassar 2000 Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol Prog 16(5), 893–896PubMedCrossRefGoogle Scholar
  47. 47.
    Pek Y. S., M. Spector, I. V. Yannas, L. J. Gibson 2004 Degradation of a collagen-chondroitin-6-sulfate matrix by collagenase and by chondroitinase. Biomaterials 25(3), 473–482PubMedCrossRefGoogle Scholar
  48. 48.
    Prendergast P. J., R. Huiskes, K. Soballe 1997 ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech. 30(6), 539–548PubMedCrossRefGoogle Scholar
  49. 49.
    Scherer K., M. Schunke, R. Sellckau, J. Hassenpflug, B. Kurz 2004 The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. Biorheology 41(3–4), 323–333PubMedGoogle Scholar
  50. 50.
    Stops, A. J. F., L. A. McMahon, D. O’Mahoney, P. E. McHugh, and P. J. Prendergast. A finite element prediction of cellular strain in a GAG-scaffold. Paper presented at: ASME Summer Bioengineering Conference, Paper 176147; June 20–24, 2007; Keystone, ColoradoGoogle Scholar
  51. 51.
    Trattnig S., A. Ba-Ssalamah, K. Pinker, C. Plank, V. Vecsei, S. Marlovits 2005 Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging. 23(7), 779–787PubMedCrossRefGoogle Scholar
  52. 52.
    Varghese, S., N. S. Hwang, A. C. Canver, P. Theprungsirikul, D. W. Lin, and J. Elisseeff. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. in press, 2007Google Scholar
  53. 53.
    Veilleux N. H., I. V. Yannas, M. Spector 2004 Effect of passage number and collagen type on the proliferative, biosynthetic, and contractile activity of adult canine articular chondrocytes in type I and II collagen-glycosaminoglycan matrices in vitro. Tissue Eng. 10(1–2), 119–127PubMedCrossRefGoogle Scholar
  54. 54.
    Vickers S. M., L. S. Squitieri, M. Spector 2006 Effects of cross-linking type II collagen-GAG scaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilage formation. Tissue Eng. 12(5), 1345–1355PubMedCrossRefGoogle Scholar
  55. 55.
    Zheng M. H., C. Willers, L. Kirilak, P. Yates, J. Xu, D. Wood, A. Shimmin 2007 Matrix-Induced Autologous Chondrocyte Implantation (MACI((R))): Biological and Histological Assessment. Tissue Eng. 13(4), 737–746PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  • Louise A. McMahon
    • 1
  • Alan J. Reid
    • 2
  • Veronica A. Campbell
    • 1
    • 3
  • Patrick J. Prendergast
    • 1
    • 2
    Email author
  1. 1.Trinity Centre for Bioengineering, School of EngineeringTrinity CollegeDublinIreland
  2. 2.Department of Mechanical Engineering, School of EngineeringTrinity CollegeDublinIreland
  3. 3.Department of Physiology, School of MedicineTrinity CollegeDublinIreland

Personalised recommendations