Annals of Biomedical Engineering

, Volume 36, Issue 2, pp 262–275 | Cite as

Dynamic Simulation of Bioprosthetic Heart Valves Using a Stress Resultant Shell Model

  • Hyunggun Kim
  • Jia Lu
  • Michael S. Sacks
  • Krishnan B. ChandranEmail author


It is a widely accepted axiom that localized concentration of mechanical stress and large flexural deformation is closely related to the calcification and tissue degeneration in bioprosthetic heart valves (BHV). In order to investigate the complex BHV deformations and stress distributions throughout the cardiac cycle, it is necessary to perform an accurate dynamic analysis with a morphologically and physiologically realistic material specification for the leaflets. We have developed a stress resultant shell model for BHV leaflets incorporating a Fung-elastic constitutive model for in-plane and bending responses separately. Validation studies were performed by comparing the finite element predicted displacement and strain measures with the experimentally measured data under physiological pressure loads. Computed regions of stress concentration and large flexural deformation during the opening and closing phases of the cardiac cycle correlated with previously reported regions of calcification and/or mechanical damage on BHV leaflets. It is expected that the developed experimental and computational methodology will aid in the understanding of the complex dynamic behavior of native and bioprosthetic valves and in the development of tissue engineered valve substitutes.


Heart valve Bioprosthetic heart valve Finite element Shell Constitutive model Dynamic analysis Cardiovascular biomechanics Soft tissue modeling Calcification Heart valve failure Heart valve disease 



The partial support of this work by an USPHS grant from the National Heart, Lung, and Blood Institute (NIH: HL-071814) and the Iowa Department of Economic Development are gratefully acknowledged.


  1. 1.
    Aupart M. R., D. G. Babuty, L. Guesnier, Y. A. Meurisse, A. L. Sirinelli, M. A. Marchand. (1996) Double valve replacement with the Carpentier-Edwards pericardial valve: 10-year results. J. Heart Valve Dis. 5:312–316PubMedGoogle Scholar
  2. 2.
    Chandran K. B., Kim S. H., Han G. (1991) Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position. J. Biomech. 24:385–395PubMedCrossRefGoogle Scholar
  3. 3.
    De Hart J., Baaijens F. P., Peters G. W., Schreurs P. J. (2003) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36:699–712PubMedCrossRefGoogle Scholar
  4. 4.
    Engelmayr G. C., Hildebrand D. K., Sutherland F. W., Mayer J. E., Sacks M. S. (2003) A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24:2523–2332PubMedCrossRefGoogle Scholar
  5. 5.
    Fung Y. C. (1993) Biomechanics: mechanical properties of living tissues 2nd Ed. New York: Springer-VerlagGoogle Scholar
  6. 6.
    Gnyaneshwar R., Kumar R. K., Balakrishnan K. R. (2002) Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73:1122–1129PubMedCrossRefGoogle Scholar
  7. 7.
    Grunkemeier G. L., Bodnar E. (1995) Comparative assessment of bioprosthesis durability in the aortic position. J. Heart Valve Dis. 4:49–55PubMedGoogle Scholar
  8. 8.
    Grunkemeier G., Wu Y., Jin R. (2002) Statistical analysis of heart valve outcomes. J. Heart Valve Dis. 11(Suppl 1):S2–S7PubMedGoogle Scholar
  9. 9.
    Hall A. F., Kovacs S. J. (1994) Automated method for characterization of diastolic transmitral Doppler velocity contours: early rapid filling. Ultrasound Med. Biol. 20:107–116PubMedCrossRefGoogle Scholar
  10. 10.
    Harringer W., Pethig K., Hagl C., Meyer G. P., Haverich A. (1999) Ascending aortic replacement with aortic valve reimplantation. Circulation 100:II24–II28PubMedGoogle Scholar
  11. 11.
    Harringer W., Pethig K., Hagl C., Wahlers T., Cremer J., Haverich A. (1999) Replacement of ascending aorta with aortic valve reimplantation: midterm results. Eur J Cardiothorac Surg. 15:803–807; discussion 7–8PubMedCrossRefGoogle Scholar
  12. 12.
    Hole J. W. (1996) Hole’s human anatomy & physiology 7th ed. Dubuque: Wm. C. Brown Publishers Google Scholar
  13. 13.
    Howard I. C., Patterson E. A., Yoxall A. (2003) On the opening mechanism of the aortic valve: some observations from simulations. J Med Eng Technol 27:259–66PubMedCrossRefGoogle Scholar
  14. 14.
    Iyengar A. K. S., Sugimoto H., Smith D. B., Sacks M. S. (2001) Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Annals of Biomedical Engineering. 29:963–73PubMedCrossRefGoogle Scholar
  15. 15.
    Jamieson W. R., Munro A. I., Miyagishima R. T., Allen P., Burr L. H., Tyers G. F. (1995) Carpentier-Edwards standard porcine bioprosthesis: clinical performance to seventeen years. Ann Thorac Surg. 60:999–1006PubMedCrossRefGoogle Scholar
  16. 16.
    Kim H., Chandran K. B., Sacks M. S., Lu J. (2007) An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann Biomed Eng. 35:30–44PubMedCrossRefGoogle Scholar
  17. 17.
    Kim H., Lu J., Sacks M. S., Chandran K. B. (2006) Dynamic simulation pericardial bioprosthetic heart valve function. J Biomech Eng. 128:717–24PubMedCrossRefGoogle Scholar
  18. 18.
    Kovacs S. J., McQueen D. M., Peskin C. S. (2001) Modelling cardiac fluid dynamics and diastolic function. Phil. Trans. R. Soc. Lond. A. 359:1299–314CrossRefGoogle Scholar
  19. 19.
    Meyer T. E., Karamanoglu M., Ehsani A. A., Kovacs S. J. (2004) Left ventricular chamber stiffness at rest as a determinant of exercise capacity in heart failure subjects with decreased ejection fraction. J Appl Physiol 97:1667–72PubMedCrossRefGoogle Scholar
  20. 20.
    Mirnajafi A., Raymer J., Scott M. J., Sacks M. S. (2005) The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials. 26:795–804PubMedCrossRefGoogle Scholar
  21. 21.
    Oommen B. S., Karamanoglu M., Kovacs S. J. (2002) Can analysis of transmitral flow-velocity contours differentiate between alternative diastolic pressure-volume relations? Cardiovascular Engineering. 2:67–72CrossRefGoogle Scholar
  22. 22.
    Otto C. M. (2004) Valvular heart disease 2nd Ed. Philadelphia, SaundersGoogle Scholar
  23. 23.
    Pethig K., Milz A., Hagl C., Harringer W., Haverich A. (2002) Aortic valve reimplantation in ascending aortic aneurysm: risk factors for early valve failure. Ann Thorac Surg. 73:29–33PubMedCrossRefGoogle Scholar
  24. 24.
    Sacks M. S. (1999) A method for planar biaxial mechanical testing that includes in-plane shear. J Biomech Eng. 121:551–5PubMedGoogle Scholar
  25. 25.
    Sacks M. S., Chuong C. J., Templeton G. H., Peshock R. (1993) In vivo 3-D reconstruction and geometric characterization of the right ventricular free wall. Ann Biomed Eng. 21:263–75PubMedCrossRefGoogle Scholar
  26. 26.
    Sacks M. S., Schoen F. J. (2002) Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res. 62:359–71PubMedCrossRefGoogle Scholar
  27. 27.
    Schoen F. J. (1998) Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium. J Heart Valve Dis. 7:174–9PubMedGoogle Scholar
  28. 28.
    Schoen F. J., Levy R. J. (1994) Pathology of substitute heart valves: new concepts and developments. J Card Surg. 9: 222–7Google Scholar
  29. 29.
    Schoen F. J., Levy R. J. (1999) Tissue heart valves: Current challenges and future research perspectives. Journal of Biomedical Materials Research. 47:439–65PubMedCrossRefGoogle Scholar
  30. 30.
    Schoen F. J., Levy R. J. (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 79:1072–80PubMedCrossRefGoogle Scholar
  31. 31.
    Schoen F. J., J.L. Robert, Henry R. (1992) Piehler. Pathological considerations in replacement cardiac valves. Cardiovascular Pathology. 1:29–52CrossRefGoogle Scholar
  32. 32.
    Simo J. C. (1993) On a Stress Resultant Geometrically Exact Shell-Model .7. Shell Intersections with 5/6-Dof Finite-Element Formulations. Computer Methods in Applied Mechanics and Engineering. 108:319–39CrossRefGoogle Scholar
  33. 33.
    Simo J. C., Fox D. D. (1989) On a Stress Resultant Geometrically Exact Shell-Model .1. Formulation and Optimal Parametrization. Computer Methods in Applied Mechanics and Engineering. 72:267–304CrossRefGoogle Scholar
  34. 34.
    Simo J. C., Fox D. D., Rifai M. S. (1989) On a Stress Resultant Geometrically Exact Shell-Model .2. The Linear-Theory - Computational Aspects. Computer Methods in Applied Mechanics and Engineering. 73:53–92CrossRefGoogle Scholar
  35. 35.
    Simo J. C., Fox D. D., Rifai M. S. (1990) On a Stress Resultant Geometrically Exact Shell-Model .3. Computational Aspects of the Nonlinear-Theory. Computer Methods in Applied Mechanics and Engineering. 79:21–70CrossRefGoogle Scholar
  36. 36.
    Simo J. C., Kennedy J. G. (1992) On a Stress Resultant Geometrically Exact Shell-Model .5. Nonlinear Plasticity - Formulation and Integration Algorithms. Computer Methods in Applied Mechanics and Engineering. 96:133–71CrossRefGoogle Scholar
  37. 37.
    Simo J. C., Rifai M. S., Fox D. D. (1990) On a Stress Resultant Geometrically Exact Shell-Model .4. Variable Thickness Shells with through-the-Thickness Stretching. Computer Methods in Applied Mechanics and Engineering. 81:91–126CrossRefGoogle Scholar
  38. 38.
    Simo J. C., Rifai M. S., Fox D. D. (1992) On a Stress Resultant Geometrically Exact Shell-Model .6. Conserving Algorithms or Nonlinear Dynamics. International Journal for Numerical Methods in Engineering. 34:117–64CrossRefGoogle Scholar
  39. 39.
    Smith D. B., Sacks M. S., Pattany P. M., Schroeder R. (1999) Fatigue-induced changes in bioprosthetic heart valve three-dimensional geometry and the relation to tissue damage. J Heart Valve Dis 8:25–33PubMedGoogle Scholar
  40. 40.
    Smith D. B., Sacks M. S., Vorp D. A., Thornton M. (2000) Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann Biomed Eng 28:598–611PubMedCrossRefGoogle Scholar
  41. 41.
    Stock U. A., Vacanti J. P., Mayer J. E. Jr., Wahlers T. (2002) Tissue engineering of heart valves – current aspects. Thorac Cardiovasc Surg 50:184–93PubMedCrossRefGoogle Scholar
  42. 42.
    Sun W., Abad A., Sacks M. S. (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech Eng. 127:905–14PubMedCrossRefGoogle Scholar
  43. 43.
    Sun W., Sacks M. S., Sellaro T. L., Slaughter W. S., Scott M. J. (2003) Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J Biomech Eng. 125:372–80PubMedCrossRefGoogle Scholar
  44. 44.
    Taylor R. L. (2003) FEAP User Manual: v7.5., Berkeley. CA, University of California, BerkeleyGoogle Scholar
  45. 45.
    Vesely I., Barber J. E., Ratliff N. B. (2001) Tissue damage and calcification may be independent mechanisms of bioprosthetic heart valve failure. J Heart Valve Dis 10:471–7PubMedGoogle Scholar
  46. 46.
    Vyavahare N. R., Hirsch D., Lerner E., Baskin J. Z., Zand R., Schoen F. J., Levy R. J. (1998) Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation: mechanistic studies of protein structure and water-biomaterial relationships. J Biomed Mater Res. 40:577–85PubMedCrossRefGoogle Scholar
  47. 47.
    Weiss J. A., Maker B. N., Govindjee S. (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering. 135:107–28CrossRefGoogle Scholar
  48. 48.
    Yamauchi T., Taniguchi K., Kuki S., Masai T., Noro M., Nishino M., Fujita S. (2005) Evaluation of the mitral valve leaflet morphology after mitral valve reconstruction with a concept “coaptation length index”. J Card Surg. 20:432–5Google Scholar
  49. 49.
    Zienkiewicz O. C., Taylor R. L. (2000) The finite element method. Vol 1., 5th Ed. Oxford, Boston: Butterworth-HeinemannGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  • Hyunggun Kim
    • 1
    • 2
  • Jia Lu
    • 3
    • 4
  • Michael S. Sacks
    • 5
  • Krishnan B. Chandran
    • 1
    • 3
    • 6
    Email author
  1. 1.Department of Biomedical Engineering, College of EngineeringUniversity of IowaIowa CityUSA
  2. 2.Department of Internal Medicine, Division of CardiologyThe University of Texas Health Science Center at HoustonHoustonUSA
  3. 3.Department of Mechanical and Industrial EngineeringUniversity of IowaIowa CityUSA
  4. 4.Center for Computer-Aided DesignUniversity of IowaIowa CityUSA
  5. 5.Department of Bioengineering, Engineered Tissue Mechanics LaboratoryUniversity of PittsburghPittsburghUSA
  6. 6.IIHR-Hydroscience and EngineeringIowa CityUSA

Personalised recommendations