Micromechanics-Based Conversion of CT Data into Anisotropic Elasticity Tensors, Applied to FE Simulations of a Mandible

  • Christian HellmichEmail author
  • Cornelia Kober
  • Bodo Erdmann


Computer Tomographic (CT) image data have become a standard basis for structural analyses of bony organs. In this context, regression functions between stiffness components and Hounsfields units (HU) from CT, related to X-ray attenuation coefficients, are widely used for the definition of the (actually inhomogeneous and anisotropic) material behavior inside the organ. Herein, we suggest to derive the functional dependence of the fully orthotropic stiffness tensors on the Hounsfield units from the physical information contained in the X-ray attenuation coefficients: (i) Based on voxel average rules for the X-ray attenuation coefficients, we assign to each voxel the volume fraction occupied by water (marrow) and that occupied by solid bone matrix. (ii) By means of a continuum micromechanics representation for bone, which is based on voxel-invariant (species and whole bone-specific) stiffness properties of solid bone matrix and of water, we convert the aforementioned volume fractions into voxel-specific orthotropic stiffness tensor components. The micromechanics model, in combination with the average rule for X-ray attenuation coefficients, predicts a quasi-linear relationship between axial Young’s modulus and HU, and highly nonlinear relationships for both circumferential and radial Young’s moduli as well as for the shear moduli in all principal material directions. Corresponding whole-organ Finite Element (FE) analyses of a partially edentulous human mandible characterized by atrophy of the alveolar ridge show that volumetric strain concentrations/peaks within the organ are decreased when considering material anisotropy, and increased when considering material inhomogeneity.


Computer tomography Finite Element analyses X-ray attenuation coefficients Hounsfield units Bone Anisotropy Inhomogeneity Continuum micromechanics 



6 × 6 matrix representing fourth-order tensor


fourth-order stiffness tensor


compressed matrix notation of fourth-order tensor \({{\mathbb{c}}}\) (Kelvin notation)

\({\mathbb{c}}_{\rm {H_{2}O}}\)

stiffness tensor of water

\({{\mathbb{c}}}_{\rm BM}\)

stiffness tensor of (extravascular) solid bone matrix

\({\mathbb{C}}_{\rm eff}\)

effective stiffness tensor of the macroscopic (porous) bone material (bone microstructure)

\({\mathbb{C}}^{\rm low}_{\rm eff}\)

lower bound for effective stiffness tensor

\({\mathbb{C}}^{\rm upp}_{\rm eff}\)

upper bound for effective stiffness tensor

\({\mathbb{C}}_{\rm eff}^{\rm hex}\)

hexagonal average of effective stiffness tensor

\({\mathbb{C}}_{\rm eff}^{\rm TI}\)

transversely isotropic average of effective stiffness tensor

\({\mathbb{C}}_{\rm eff}^{\rm iso}\)

isotropic stiffness closest to effective orthotropic stiffness tensor

\(\hat{\mathbf C}_{\rm eff}\)

compressed matrix notation of orthotropic effective stiffness tensor

\(\hat{\mathbf C}_{\rm eff}^{\rm iso}\)

compressed matrix notation of isotropic stiffness closest to effective orthotropic stiffness tensor


fourth-order compliance tensor


log-Euclidean distance


Young’s modulus in radial direction


Young’s modulus in circumferential direction


Young’s modulus in axial direction


volume fraction of material constituent i


shear modulus in radial-circumferential plane


shear modulus in radial-axial plane


shear modulus in circumferential-axial plane


effective shear modulus


inverse of the acoustic tensor K


Hounsfield unit


Hounsfield unit of (extravascular) solid bone matrix


fourth-order unity tensor


volumetric part of \({\mathbb{I}}\)


deviatoric part of \({\mathbb{I}}\)


second-order acoustic tensor (entering the expression for \({\mathbb{P}}_{\rm cyl}\))


effective bulk modulus


number of eigenvalues of matrix A


number of material constituents

\({\mathbb{P}}_{\rm cyl}\)

Hill’s tensor for a cylindrical inclusion in an infinite matrix


ith eigenvector of matrix A


Kronecker delta (components of second-order unity tensor)


(macroscopic) strain tensor


volumetric (macroscopic) strain

Open image in new window

fourth-order tensor entering the expression for \({\mathbb{P}}_{\rm cyl}\)


Euler angle in Laws’ integral expression for Hill’s tensor \({\mathbb{P}}_{\rm cyl}\)


vascular porosity, related to Haversian canals and intertrabecular space


polar coordinate, used for rotation and averaging of orthotropic material properties


ith eigenvalue of matrix A


X-ray intensity attenuation coefficient of composite material (bone)

\(\mu_{\rm {H_{2}O}}\)

attenuation coefficient of water


attenuation coefficient of (extravascular) solid bone matrix


Poisson’s ratio in radial-circumferential plane


Poisson’s ratio in radial-axial plane


Poisson’s ratio in circumferential-axial plane


(real) mass density of material constituent i


spherical coordinate, used for rotation and averaging of orthotropic material properties


Euler angle in Laws’ integral expression for Hill’s tensor \({\mathbb{P}}_{\rm cyl}\)


unit vector in Laws’ integral expression for Hill’s tensor \({\mathbb{P}}_{\rm cyl}\)



The reported Finite Element simulations are part of a research project on the human mandible, which is under the medical courtesy of Robert Sader, Frankfurt University, Germany, and Hans-Florian Zeilhofer, Basle University Hospital, Switzerland. The authors are grateful for the implantology-related medical advice of Stefan Stuebinger, Frankfurt University, Germany, and for the support of Sherin Torabia in the initial phase of our study on relations between CT data and elastic properties of bony organs, in the course of her Master’s thesis completed at Vienna University of Technology, under the supervision of the first author.84,85


  1. 1.
    Akkus O., Polyakova-Akkus A., Adar F., Schaffler M.B. (2003) Aging of microstructural compartments in human compact bone. Journal of Bone and Mineral Research 18(6):1012–1019CrossRefGoogle Scholar
  2. 2.
    Arsigny, V., P. Fillard, X. Pennec, and N. Ayache. Fast and simple calculus on tensors in the log-Euclidean framework. In: Proceedings of the 8th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, Part I, volume 3749 of LNCS, edited by J. Duncan and G. Gerig. Palm Springs, CA, USA: Springer Verlag, 2005, pp. 115–122Google Scholar
  3. 3.
    Arsigny V., Fillard P., Pennec X., Ayache N. (2006) Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine 56(2):411–421PubMedCrossRefGoogle Scholar
  4. 4.
    Arsigny V., Fillard P., Pennec X., Ayache N. (2007) Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications 29(1):328–347Google Scholar
  5. 5.
    Ashman R.B., Corin J.D., Turner C.H. (1987) Elastic properties of cancellous bone: measurement by an ultrasonic technique. Journal of Biomechanics 20(10):979–986PubMedCrossRefGoogle Scholar
  6. 6.
    Ashman R.B., Cowin S.C., van Buskirk W.C., Rice J.C. (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. Journal of Biomechanics 17(5):349–361PubMedCrossRefGoogle Scholar
  7. 7.
    Ashman R.B., van Buskirk W.C. (1987) Elastic properties of a human mandible. Advances in Dental Research 1:64 –67PubMedGoogle Scholar
  8. 8.
    Benjamin J.R., Cornell C.A. (1970) Probability, Statistics and Decision for Civil Engineers. McGraw-Hill, Maidenhead, EnglandGoogle Scholar
  9. 9.
    Bentzen S.M., Hvid I., Joergensen J. (1987) Mechanical strength of tibial trabecular bone evaluated by X-ray computed tomography. Journal of Biomechanics 20:743–752PubMedCrossRefGoogle Scholar
  10. 10.
    Benveniste Y. (1987) A new approach to the application of Mori-Tanakas theory in composite materials. Mechanics of Materials 6:147–157CrossRefGoogle Scholar
  11. 11.
    Bilaniuk N., Wong G.S.K. (1993) Speed of sound in pure water as a function of temperature. Journal of the Acoustical Society of America 93(3):1609–1612CrossRefGoogle Scholar
  12. 12.
    Biltz R.M., Pellegrino E.D. (1969) The chemical anatomy of bone. Journal of Bone and Joint Surgery 51-A(3):456–466Google Scholar
  13. 13.
    Boccaccio, A., L. Lamberti, C. Pappalettere, A. Carano, and M. Cozzani. Mechanical behavior of an osteomized mandible with distraction orthodontic devices. J. Biomech. 39(15):2907–2918, 2006PubMedCrossRefGoogle Scholar
  14. 14.
    Boivin G., Meunier P.J. (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcified Tissue International 70:503–511PubMedCrossRefGoogle Scholar
  15. 15.
    Bornemann F., Erdmann B., Kornhuber R. (1993) Adaptive multilevel-methods in three space dimensions. International Journal for Numerical Methods in Engineering 36:3187–3203CrossRefGoogle Scholar
  16. 16.
    Bossy E., Talmant M., Peyrin F., Akrout L., Cloetens P., Laugier P. (2004) In in vitro study of the ultrasonic axial transmission technique at the radius: 1 MHz velocity measurements are sensitive to both mineralization and introcortical porosity. Journal of Bone and Mineral Research 19(9):1548–1556CrossRefGoogle Scholar
  17. 17.
    Chen X., Chen H. (1998) The influence of alveolar structures on the torsional strain field in an gorilla corporeal cross section. Journal of Human Evolution 35:611–633PubMedCrossRefGoogle Scholar
  18. 18.
    Christiansen D.L., Huang E.K., Silver F.H. (2000) Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biology 19:409–420PubMedCrossRefGoogle Scholar
  19. 19.
    Ciarelli M.J., Goldstein S.A., Kuhn J.L., Cody D.D., Brown M.B. (1991) Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. Journal of Orthopeadic Research 9:674–682PubMedCrossRefGoogle Scholar
  20. 20.
    Couteau B., Hobatho M.-C., Darmana R., Brignola J.-C., Arlaud J.-Y. (1998) Finite element modeling of the vibrational behavior of the human femur using CT-based individualized geometrical and material properties. Journal of Biomechanics 31:383–386PubMedCrossRefGoogle Scholar
  21. 21.
    Cowin S.C. (2003) A recasting of anisotropic poroelasticity in matrices of tensor components. Transport in Porous Media 50:35–56CrossRefGoogle Scholar
  22. 22.
    Cowin S.C., Mehrabadi M.M. (1992) The structure of the linear anisotropic elastic symmetries. Journal of the Mechanics and Physics of Solids 40(7):1459–1471CrossRefGoogle Scholar
  23. 23.
    Cowin S.C., Yang G., Mehrabadi M.M. (1999) Bounds on the effective anisotropic elastic constants. Journal of Elasticity 57:1–24CrossRefGoogle Scholar
  24. 24.
    Crawford R.P., Rosenberg W.S., Keaveny T.M. (2003) Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. Journal of Biomechanical Engineering 125:434–438PubMedCrossRefGoogle Scholar
  25. 25.
    Crawley E.O., Evans W.D., Owen G.M. (1988) A theoretical analysis of the accuracy of single-energy CT bone measurements. Physics in Medicine and Biology 33(10):1113–1127PubMedCrossRefGoogle Scholar
  26. 26.
    Dalstra M., Huiskes R., Erning L.v. (1995) Development and validation of a three-dimensional finite element model of the pelvic bone. Journal of Biomechanical Engineering 117:272–278PubMedGoogle Scholar
  27. 27.
    Dechow P.C., Nail G.A., Schwartz-Dabney C.L., Ashman R.B. (1993) Elastic properties of human supraorbital and mandibular bone. American Journal of Physical Anthropology 90(3):291–306PubMedCrossRefGoogle Scholar
  28. 28.
    Fritsch A., Dormieux L., Hellmich Ch. (2006) Porous polycrystals built up by uniformly and axisymmetrically oriented needles: Homogenization of elastic properties. Comptes Rendus Mécanique 334:151–157CrossRefGoogle Scholar
  29. 29.
    Fritsch A., Hellmich Ch. (2007) Universal microstructural patterns in cortical and trabecular, extracellular and extravacular bone materials: Micromechanics-based prediction of anisotropic elasticity. Journal of Theoretical Biology 244:597–620PubMedCrossRefGoogle Scholar
  30. 30.
    Gnäupel-Herold T., Brand P.C., Prask H.J. (1998) Calculation of single-crystal elastic constants for cubic crystal symmetry from powder diffraction data. Journal of Applied Crystallography 31:929–935CrossRefGoogle Scholar
  31. 31.
    Gould S.J., Lewontin R.C. (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptionist program. Proceedings of the Royal Society of London, Series B 205(1161):581–598Google Scholar
  32. 32.
    Hart R.T., Hennebel V.V., Thongpreda N., van Buskirk W.C., Anderson R.C. (1992) Modeling the biomechanics of the mandible: a three-dimensional finite element study. Journal of Biomechanics 25(3):261–286PubMedCrossRefGoogle Scholar
  33. 33.
    Helbig K. (1994) Foundations of anisotropy for exploration seismics. Pergamon, Elsevier, Oxford, EnglandGoogle Scholar
  34. 34.
    Hellmich, Ch. Microelasticity of bone. In: Dormieux L., Ulm F.-J. (eds) (2005) CISM Vol.480–Applied Micromechanics of Porous Media. Springer, Wien - New York, pp 289–332.CrossRefGoogle Scholar
  35. 35.
    Hellmich Ch., Barthélémy J.-F., Dormieux L. (2004) Mineral-collagen interactions in elasticity of bone ultrastructure–a continuum micromechanics approach. European Journal of Mechanics A-Solids 23:783–810Google Scholar
  36. 36.
    Hellmich Ch., Ulm F.-J. (2002) Are mineralized tissues open crystal foams reinforced by crosslinked collagen?–some energy arguments. Journal of Biomechanics 35:1199–1212PubMedCrossRefGoogle Scholar
  37. 37.
    Hellmich Ch., Ulm F.-J. (2002) A micromechanical model for the ultrastructural stiffness of mineralized tissues. Journal of Engineering Mechanics (ASCE) 128(8):898–908CrossRefGoogle Scholar
  38. 38.
    Hellmich Ch., Ulm F.-J. (2003) Average hydroxyapatite concentration is uniform in extracollageneous ultrastructure of mineralized tissue. Biomechanics and Modeling in Mechanobiology 2:21–36PubMedCrossRefGoogle Scholar
  39. 39.
    Hellmich Ch., Ulm F.-J. (2005) Micro-porodynamics of bones: prediction of the ‘Frenkel-Biot’ slow compressional wave. Journal of Engineering Mechanics (ASCE) 131(9):918–927CrossRefGoogle Scholar
  40. 40.
    Hellmich Ch., Ulm F.-J., Dormieux L. (2004) Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions?–arguments from a multiscale approach. Biomechanics and Modeling in Mechanobiology 2:219–238PubMedCrossRefGoogle Scholar
  41. 41.
    Helnwein P. (2001) Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Computer Methods in Applied Mechanics and Engineering 190:2753–2770CrossRefGoogle Scholar
  42. 42.
    Hill R. (1952) The elastic behavior of a crystalline aggregate. Proceedings of the Physical Society, A 65:349–354CrossRefGoogle Scholar
  43. 43.
    Hunt B.R., Eipsman R.L., Rosenberg J.M. (2001) A Guide to MATLAB for Beginners and Experienced Users 1 edition. Cambridge University Press, Cambridge, United KingdomGoogle Scholar
  44. 44.
    Jackson D.F., Hawkes D.J. (1981) X-ray attenuation coefficients of elements and mixtures. Physics Letters 70(3):169–233Google Scholar
  45. 45.
    Kalender W.A. (2000) Computed Tomography. MCD-Verlag, Munich, GermanyGoogle Scholar
  46. 46.
    Keyak J.H., Rossi S.A., Jones K.A., Skinner H.B. (1998) Prediction of femoral fracture load using automated finite element modeling. Journal of Biomechanics 31(2):125–133PubMedCrossRefGoogle Scholar
  47. 47.
    Kober C., Erdmann B., Hellmich C., Geiger M., Sader R., Zeilhofer H.-F. (2006) How does the PDL influence overall stress/strain profiles of a partially edentulous mandible?. In: Davidovitch Z., MAh J., Suthanarak S. (eds) Biological Mechanisms of Tooth Eruption, Resorption and Movement. Harvard Society for the Advancement of Othodontics, Boston MA USAGoogle Scholar
  48. 48.
    Kober, C., B. Erdmann, C. Hellmich, S. Stübinger, R. Sader, and H.-F. Zeilhofer. Dental versus mandibular biomechanics: The influence of the PDL on the overall structural behavior. J. Biomech. 39(S1): 2006Google Scholar
  49. 49.
    Kober C., Erdmann B., Hellmich Ch., Sader R., Zeilhofer H.-F. (2005) Validation of interdependency between inner structure visualization and structural mechanics simulation. International Congress Series 1281:1373CrossRefGoogle Scholar
  50. 50.
    Kober C., Erdmann B., Hellmich Ch., Sader R., Zeilhofer H.-F. (2006) Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible. Computer Methods in Biomechanics and Biomedical Engineering 9(2):91–101CrossRefGoogle Scholar
  51. 51.
    Kober C., Erdmann B., Lang J., Sader R., Zeilhofer H.-F. (2004) Sensitivity of the Temporomandibular Joint Capsule for the Structural Behaviour of the Human Mandible. Biomedizinische Technik 49:372–373Google Scholar
  52. 52.
    Kober, C., B. Erdmann, R. Sader, and H.-F. Zeilhofer. Simulation (FEM) of the human mandible: A comparison of bone mineral density and stress/strain profiles due to the masticatory system. In: Proceedings 10th Workshop, The Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields, Ulm, Germany: Ulm University, 2003Google Scholar
  53. 53.
    Kober C., Sader R., Zeilhofer H.-F. (2003) Segmentation and visualization of the inner structure of craniofacial hard tissue. International Congress Series 1256:1257–1262CrossRefGoogle Scholar
  54. 54.
    Kober, C., R. Sader, H.-F. Zeilhofer, and P. Deuflhard. An individual material description of the human mandible. In: Mathematical Modelling and Computing in Biology and Medicine. The MIRIAM Project Series, Progetto Leonardo, edited by V. Capasso. Bologna, Italy: Esculapio Publications, 2003, pp. 103–109, 641–643Google Scholar
  55. 55.
    Korioth T.W.P., Romilly D.P., Hannam A.G. (1992) Three-dimensional finite element stress analysis of the dentate human mandible. American Journal of Physical Anthropology 88(1):69–96PubMedCrossRefGoogle Scholar
  56. 56.
    Korioth T.W.P., Versluis A. (1997) Modeling the mechanical behavior of the jaws and their related structures by finite element (fe) analysis. Critical Reviews in Oral Biology and Medicine 8(1):90–104PubMedCrossRefGoogle Scholar
  57. 57.
    Laws N. (1977) The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material. Journal of Elasticity 7(1):91–97Google Scholar
  58. 58.
    Laws N. (1985) A note on penny-shaped cracks in transversely isotropic materials. Mechanics of Materials 4:209–212CrossRefGoogle Scholar
  59. 59.
    Lees S. (1987) Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Connective Tissue Research 16:281–303PubMedCrossRefGoogle Scholar
  60. 60.
    Lees S., Ahern J.M., Leonard M. (1983) Parameters influencing the sonic velocity in compact calcified tissues of various species. Journal of the Acoustical Society of America 74(1):28–33PubMedCrossRefGoogle Scholar
  61. 61.
    Lees S., Hanson D., Page E.A. (1995) Some acoustical properties of the otic bones of a fin whale. Journal of the Acoustical Society of America 99(4):2421–2427CrossRefGoogle Scholar
  62. 62.
    Lees S., Heeley J.D., Cleary P.F. (1979) A study of some properties of a sample of bovine cortical bone using ultrasound. Calcified Tissue International 29:107–117PubMedCrossRefGoogle Scholar
  63. 63.
    Lees S., Tao N.-J., Lindsay M. (1990) Studies of compact hard tissues and collagen by means of Brillouin light scattering. Connective Tissue Research 24:187–205PubMedCrossRefGoogle Scholar
  64. 64.
    Limbert G., Estivalezes E., Hobatho M.-C., Baunin C., Cahuzac J.P. (1998) In vivo determination of homogenized mechanical characteristics of human tibia: application to the study of tibial torsion in vivo. Clinical Biomechanics 13:473–479CrossRefGoogle Scholar
  65. 65.
    Lotz J.C., Cheal E.J., Hayes W.C. (1991) Fracture prediction for the proximal femur using finite element models: Part I–linear analysis. Journal of Biomechanical Engineering 113:353–360PubMedGoogle Scholar
  66. 66.
    Lotz J.C., Cheal E.J., Hayes W.C. (1991) Fracture prediction for the proximal femur using finite element models: Part II–nonlinear analysis. Journal of Biomechanical Engineering 113:361–365PubMedGoogle Scholar
  67. 67.
    Marinescu R., Daegling D.J., Rapoff A.J. (2005) Finite-element modeling of the anthropoid mandible: the effects of altered boundary conditions. The Anatomical Record 283A:300–309CrossRefGoogle Scholar
  68. 68.
    Mori T., Tanaka K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21(5):571–574CrossRefGoogle Scholar
  69. 69.
    Müller-Hannemann, M., C. Kober, R. Sader, and H.-F. Zeilhofer. Anisotropic validation of hexahedral meshes for composite materialsin biomechanics. In: Proceedings of 10th International Meshing Roundtable, Newport Beach, USA: Sandia National Laboratories, 2001, pp. 249–260Google Scholar
  70. 70.
    NLM. The visible human project. National Library of Medicine, 4, 2005.
  71. 71.
    Norris A.N. (2006) The isotropic material closest to a given anisotropic material. Journal of Mechanics of Material and Structures 1:223–238CrossRefGoogle Scholar
  72. 72.
    Pattijn V., Cleyenbreugel T.v., van der Sloten J., van Audercke R., van der Perre G., Wevers M. (2001) Structural and radiological parameters for the nondestructive characterization of trabecular bone. Annals of Biomedical Engineering 29:1064–1073PubMedCrossRefGoogle Scholar
  73. 73.
    Rho J.-Y., Hobatho M.C., Ashman R.B. (1995) Relations of mechanical properties to density and CT numbers in human bone. Medical Engineering & Physics 17(5):347–355PubMedCrossRefGoogle Scholar
  74. 74.
    Rho J.-Y., Mishra S.R., Chung K., Bai J., Pharr G.M. (2001) Relationship between ultrastructure and the nanoindentation properties of intramuscular herring bones. Annals of Biomedical Engineering 29:1–7CrossRefGoogle Scholar
  75. 75.
    Rong, Q. Finite element simulation of the bone modeling and remodeling process around a dental implant. PhD Thesis, Karlsruhe University, 2002Google Scholar
  76. 76.
    Roschger P., Gupta H.S., Berzlanovich A., Ittner G., Dempster D.W., Fratzl P., Cosman F., Parisien M., Lindsay R., Nieves J.W., Klaushofer K. (2003) Constant mineralization density distribution in cancellous human bone. Bone 32:316–323PubMedCrossRefGoogle Scholar
  77. 77.
    Schwartz-Dabney C.L., Dechow P.C. (2002) Edentulation alters material properties of cortical bone in the human mandible. Journal of Dental Research 81(9):613–617PubMedGoogle Scholar
  78. 78.
    Stenderup K., Justensen J., Eriksen E.F., Rattan S.I.S., Kassem M. (2001) Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. Journal of Bone and Mineral Research 16(6):1120–1129PubMedCrossRefGoogle Scholar
  79. 79.
    . Suquet P. (eds) (1997) Continuum micromechanics. Springer, Wien–New YorkGoogle Scholar
  80. 80.
    Swadener J.G., Rho J.-Y., Pharr G.M. (2001) Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. Journal of Biomedical Material Research 57:108–112PubMedCrossRefGoogle Scholar
  81. 81.
    Taddei, F., L. Cristofolini, S. Martelli, H. S. Gill, and M. Viceconti. Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy. J. Biomech. 39(13):2457–2467, 2006PubMedCrossRefGoogle Scholar
  82. 82.
    Taddei F., Pancanti A., Viceconti M. (2004) An improved method for the automatic mapping of computed tomography numbers onto finite element models. Medical Engineering & Physics 26:61–69PubMedCrossRefGoogle Scholar
  83. 83.
    Taylor W.R., Roland E., Ploeg H., Hertig D., Klabunde R., Warner M.D., Hobatho M.-C., Rakotomanana L., Clift S.E. (2002) Determination of orthotropic bone elastic constants using FEA and model analysis. Journal of Biomechanics 35(6):767–773PubMedCrossRefGoogle Scholar
  84. 84.
    Torabia, S. Identification of a relationship between the chemical constituents of mineralized tissues: Bridging computed tomography and micromechanical modeling, for noninvasive determination of elastic properties of bone. Master’s Thesis, Vienna University of Technology, 2004Google Scholar
  85. 85.
    Torabia, S., and Ch. Hellmich. In-vivo determination of elastic properties of bone, based on (p)QCT and micromechanical modeling. In: Proceedings of the 16th International Bone Densitometry Workshop, Annecy, France, edited by P. Laugier and D. Hans, 2004Google Scholar
  86. 86.
    Turner C.H., Rho J.-Y., Takano Y., Tsui T.Y., Pharr G.M. (1999) The elastic properties of cortical and trabecular bone tissues are similar: results from two microscopic measurement techniques. Journal of Biomechanics 32:437–441PubMedCrossRefGoogle Scholar
  87. 87.
    Viceconti M., Davinelli M., Taddei F., Cappello A. (2004) Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. Journal of Biomechanics 37:1597–1605PubMedCrossRefGoogle Scholar
  88. 88.
    Yoon Y.J., Yang G., Cowin S.C. (2002) Estimation of the effective transversely isotropic elastic constants of a material from known values of the material’s orthotropic elastic constants. Biomechanics and Modeling in Mechanobiology, 1:83–93PubMedCrossRefGoogle Scholar
  89. 89.
    Zannoni C., Mantovani R., Viceconti M. (1998) Material properties assignment to finite element models of bone structures. Medical Engineering & Physics 20:735–740PubMedCrossRefGoogle Scholar
  90. 90.
    Zaoui, A. Structural morphology and constitutive behavior of microheterogeneous materials. In: Suquet, P. (ed.), Continuum Micromechanics. Springer, Wien – New York, (1997), pp. 291–347.Google Scholar
  91. 91.
    Zaoui A. (2002) Continuum micromechanics: Survey. Journal of Engineering Mechanics (ASCE) 128(8):808–816CrossRefGoogle Scholar
  92. 92.

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  • Christian Hellmich
    • 1
    Email author
  • Cornelia Kober
    • 2
  • Bodo Erdmann
    • 3
  1. 1.Vienna University of Technology (TU Wien)ViennaAustria
  2. 2.Osnabrück University of Applied SciencesOsnabrueckGermany
  3. 3.Zuse InstituteBerlin-DahlemGermany

Personalised recommendations