Annals of Biomedical Engineering

, Volume 36, Issue 1, pp 153–161

The Power Law of Sensory Adaptation: Simulation by a Model of Excitability in Spider Mechanoreceptor Neurons

Article

Abstract

The power law of sensory adaptation was introduced more than 50 years ago. It is characterized by action potential adaptation that follows fractional powers of time or frequency, rather than exponential decays and corresponding frequency responses. Power law adaptation describes the responses of a range of vertebrate and invertebrate sensory receptors to deterministic stimuli, such as steps or sinusoids, and to random (white noise) stimulation. Hypotheses about the physical basis of power law adaptation have existed since its discovery. Its cause remains enigmatic, but the site of power law adaptation has been located in the conversion of receptor potentials into action potentials in some preparations. Here, we used pseudorandom noise stimulation and direct spectral estimation to show that simulations containing only two voltage activated currents can reproduce the power law adaptation in two types of spider mechanoreceptors. Identical simulations were previously used to explain the different responses of these two types of sensory neurons to step inputs. We conclude that power law adaptation results during action potential encoding by nonlinear combination of a small number of activation and inactivation processes with different exponential time constants.

Keywords

Action potential Neural coding Information capacity Ion channel Hodgkin–Huxley Frequency response 

References

  1. 1.
    Barth F. G., Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z. Vergl. Physiol. 55: 407–449, 1971CrossRefGoogle Scholar
  2. 2.
    Bendat J. S., A. G. Piersol, Engineering Applications of Correlation, Spectral Analysis. New York: John Wiley & Sons, 1980. pp. 1–302Google Scholar
  3. 3.
    Biederman-Thorson M., J. Thorson, Dynamics of excitation and inhibition in the light-adapted Limulus Eye in situ. J. Gen. Physiol. 58: 1–19, 1971PubMedCrossRefGoogle Scholar
  4. 4.
    Bohnenberger J., Matched transfer characteristics of single units in a compound slit sense organ. J. Comp. Physiol. 142: 391–402, 1981CrossRefGoogle Scholar
  5. 5.
    Brown M. C., R. B. Stein, Quantitative studies on the slowly adapting stretch receptor of the crayfish. Kybernetik 3: 175–185, 1966PubMedCrossRefGoogle Scholar
  6. 6.
    Chapman K. M., R. S. Smith, A linear transfer function underlying impulse frequency modulation in a cockroach mechanoreceptor. Nature 197: 699–700, 1963CrossRefGoogle Scholar
  7. 7.
    Cooley J. W., J. W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19: 297–301, 1965CrossRefGoogle Scholar
  8. 8.
    Destexhe A., J. R. Huguenard, Nonlinear thermodynamic models of voltage-dependent currents. J. Comput. Neurosci. 9: 259–270, 2000PubMedCrossRefGoogle Scholar
  9. 9.
    French A. S., Dynamic properties of the action potential encoder in an insect mechanosensory neuron. Biophys. J. 46: 285–289, 1984PubMedGoogle Scholar
  10. 10.
    French A. S., The receptor potential and adaptation in the cockroach tactile spine. J. Neurosci. 4: 2063–2068, 1984PubMedGoogle Scholar
  11. 11.
    French A. S., A. V. Holden, Alias-free sampling of neuronal spike trains. Kybernetik 8: 165–171, 1971PubMedCrossRefGoogle Scholar
  12. 12.
    French A. S., A. V. Holden, R. B. Stein, The estimation of the frequency response function of a mechanoreceptor. Kybernetik 11: 15–23, 1972PubMedCrossRefGoogle Scholar
  13. 13.
    French A. S., U. Höger, S. Sekizawa, P. H. Torkkeli, Frequency response functions and information capacities of paired spider mechanoreceptor neurons. Biol. Cybern. 85: 293–300, 2001PubMedCrossRefGoogle Scholar
  14. 14.
    French A. S., I. Panek, P. H. Torkkeli, Shunting versus inactivation: simulation of GABAergic inhibition in spider mechanoreceptors suggests that either is sufficient. Neurosci. Res. 55: 189–196, 2006PubMedCrossRefGoogle Scholar
  15. 15.
    French A. S., P. H. Torkkeli, The time course of sensory adaptation in the cockroach tactile spine. Neurosci. Lett. 178: 147–150, 1994PubMedCrossRefGoogle Scholar
  16. 16.
    Gilboa G., R. Chen, N. Brenner, History-dependent multiple-time-scale dynamics in a single-neuron model. J. Neurosci. 25: 6479–6489, 2005PubMedCrossRefGoogle Scholar
  17. 17.
    Gingl E., A. S. French, Active signal conduction through the sensory dendrite of a spider mechanoreceptor neuron. J. Neurosci. 23: 6096–6101, 2003PubMedGoogle Scholar
  18. 18.
    Gingl E., A. S. French, I. Panek, S. Meisner, P. H. Torkkeli, Dendritic excitability and localization of GABA-mediated inhibition in spider mechanoreceptor neurons. Eur. J. Neurosci. 20: 59–65, 2004PubMedCrossRefGoogle Scholar
  19. 19.
    Hodgkin A. L., A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500–544, 1952PubMedGoogle Scholar
  20. 20.
    Johnston D., S. M. S. Wu, Foundations of Cellular Neurophysiology. Cambridge, MA: MIT Press, 1995. pp. 1–676Google Scholar
  21. 21.
    Juusola M., A. S. French, The efficiency of sensory information coding by mechanoreceptor neurons. Neuron 18: 959–968, 1997PubMedCrossRefGoogle Scholar
  22. 22.
    Landgren S., On the excitation mechanism of the carotid baroreceptors. Acta Physiol. Scand. 26: 1–34, 1952PubMedCrossRefGoogle Scholar
  23. 23.
    Liebovitch L. S., J. Fischbarg, J. P. Koniarek, Ion channel kinetics: a model based on fractal scaling rather than multistate markov processes. Math. Biosci. 84: 37–68, 1987CrossRefGoogle Scholar
  24. 24.
    Looft F. J., Linear systems analysis of cutaneous type I mechanoreceptors. IEEE Trans. Biomed. Eng. 37: 565–573, 1990PubMedCrossRefGoogle Scholar
  25. 25.
    Looft F. J., Response of monkey glabrous skin mechanoreceptors to random-noise sequences: III. spectral analysis. Somatosens. Mot. Res. 13: 235–244, 1996PubMedCrossRefGoogle Scholar
  26. 26.
    MacGregor R. J., Neural and Brain Modeling. San Diego, CA: Academic Press, 1987. pp. 1–643Google Scholar
  27. 27.
    Millhauser G. L., E. E. Salpeter, R. E. Oswald, Diffusion models of ion-channel gating and the origin of power-law distributions from single-channel recording. Proc. Natl. Acad. Sci. USA 85: 1503–1507, 1988PubMedCrossRefGoogle Scholar
  28. 28.
    Sekizawa S.-i., A. S. French, U. Höger, P. H. Torkkeli, Voltage-activated potassium outward currents in two types of spider mechanoreceptor neurons. J. Neurophysiol. 81: 2937–2944, 1999PubMedGoogle Scholar
  29. 29.
    Sekizawa S.-i., A. S. French, P. H. Torkkeli, Low-voltage-activated calcium current does not regulate the firing behavior in paired mechanosensory neurons with different adaptation properties. J. Neurophysiol. 83: 746–753, 2000PubMedGoogle Scholar
  30. 30.
    Shannon C. E., W. Weaver, The Mathematical Theory of Communication. Urbana, Chicago and London: University of Illinois Press, 1949. pp. 1–117Google Scholar
  31. 31.
    Strout J., Conical: the computational neuroscience class library. Proc. 18th Annu. Conf. Cogn. Sci. Soc. 18:849, 1996.Google Scholar
  32. 32.
    Thorson J., M. Biederman-Thorson, Distributed relaxation processes in sensory adaptation. Science 183: 161–172, 1974PubMedCrossRefGoogle Scholar
  33. 33.
    Toib A., V. Lyakhov, S. Marom, Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels. J. Neurosci. 18: 1893–1903, 1998PubMedGoogle Scholar
  34. 34.
    Torkkeli P. H., A. S. French, Simulation of different firing patterns in paired spider mechanoreceptor neurons: the role of Na+ channel inactivation. J. Neurophysiol. 87: 1363–1368, 2002PubMedGoogle Scholar
  35. 35.
    Torkkeli P. H., S. Sekizawa, A. S. French, Inactivation of voltage-activated Na+ currents contributes to different adaptation properties of paired mechanosensory neurons. J. Neurophysiol. 85: 1595–1602, 2001PubMedGoogle Scholar
  36. 36.
    Warland D. D., M. A. Landolfa, J. P. Miller, W. Bialek. Reading between the spikes in the cercal filiform hair receptors of the cricket. In: Analysis and Modeling of Neural Systems. edited by Eckman F., Kluwer Academic, Boston 1992, pp. 327–333Google Scholar
  37. 37.
    Watts R. E., A. S. French, Sensory transduction in dorsal cutaneous mechanoreceptors of the frog, Rana pipiens. J. Comp. Physiol. A 157: 657–665, 1985PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  1. 1.Department of Physiology and BiophysicsDalhousie UniversityHalifaxCanada

Personalised recommendations