Annals of Biomedical Engineering

, Volume 35, Issue 12, pp 2050–2064 | Cite as

Influence of Ventricular Pressure Drop on Mitral Annulus Dynamics Through the Process of Vortex Ring Formation

Article

Abstract

Several studies have suggested that the mitral annulus displacement and velocity in early diastole can be used as indicators of diastolic performance. The peak velocity of the mitral annulus away from the LV apex during early diastole, which indicates the rate of longitudinal expansion of the LV, is reduced in patients with impaired diastolic relaxation. With the intention of relating the trans-mitral flow to mitral annulus plane dynamics, we measured mitral annulus recoil force for different valve sizes, while applying an exponential pressure drop in a simplified model of the ventricle. The temporal changes in diameter of the valve during rapid filling phase were also considered. The process of ventricular vortex formation was studied together with the measurement of mitral annulus recoil force within different pressure drop conditions. Matching the vorticity contour plots with the recoil force measurements resulted in the fact that the magnitude of recoil is maximal once the vortex ring is about to pinch off, regardless of the valve size or the characteristics of ventricular pressure drop. This study showed that the mitral annulus recoil is maximal once occurs at the vortex formation time ranging from 3.5 to 4.5. It was also shown that the presence of leaflets would dissipate the annulus recoil force.

Keywords

Vortex ring Vortex formation time Left ventricle Diastole Mitral annulus recoil 

References

  1. 1.
    Alam M., Höglund C. Assessment by echocardiogram of left ventricular diastolic function in healthy subjects using the atrioventricular plane displacement. Am. J. Cardiol. 69:505–565, 1992Google Scholar
  2. 2.
    Appleton C. P. Doppler assessment of left ventricular diastolic function: the refinements continue. J. Am. Coll. Cardiol. 2:1697–1700, 1993Google Scholar
  3. 3.
    Baccani B., Domenichini F., Pedrizzetti G., Tonti G. Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J. Biomech. 35(5):665–671, 2002PubMedCrossRefGoogle Scholar
  4. 4.
    Bellhouse B. J. Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc. Res. 6:199–210, 1972PubMedGoogle Scholar
  5. 5.
    Bolzon G., Zovatto L., Pedrizzetti G. (2003) Birth of three-dimensionality in a pulsed jet through a circular orifice. J. Fluid Mech. 493:209–218CrossRefGoogle Scholar
  6. 6.
    Brecher G. A. Experimental evidence of ventricular diastolic suction. Circ. Res. 4:513–518, 1956PubMedGoogle Scholar
  7. 7.
    Bruch C., Schmermund A., Bartel T., Schaar J., Erbel R. Tissue Doppler imaging: a new technique for assessment of pseudonormalization of the mitral inflow pattern. Echocardiography 17(6 Pt 1):539–546, 2000PubMedCrossRefGoogle Scholar
  8. 8.
    Brutsaert D. L., Rademakera F. E., Sys S. U. Triple control of relaxation: implications in cardiac disease. Circulation 69:190–196, 1984PubMedGoogle Scholar
  9. 9.
    Brutsaert D. L., Sys S. U. Relaxation and diastole of the heart. Physiol. Rev. 69:1228–1315, 1989PubMedGoogle Scholar
  10. 10.
    Carr-White G. S., Gibson D. G. Mitral annulus dynamics: determinant of left ventricular filling. J. Cardiol. 37(suppl I):27–32, 2001PubMedGoogle Scholar
  11. 11.
    Choong C. Y., Herrmann H. C., Weymann A. E., Fifer M. A. Preload dependence of Doppler-derived indexes of left ventricular diastolic function in humans. J. Am. Coll. Cardiol. 10:800–808, 1987PubMedGoogle Scholar
  12. 12.
    Dabiri J. O., Gharib M. (2005) Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 538:111–136CrossRefGoogle Scholar
  13. 13.
    Dong S. J., Hees P. S., Siu C. O., Weiss J. L., Shapiro E. P. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am. J. Physiol. Heart Circ. Physiol. 281:H2002–H2009, 2001PubMedGoogle Scholar
  14. 14.
    Fukuda K., Oki T., Tabata T., Luchi A., Ito S. Regional left ventricular wall motion abnormalities in myocardial infarction and mitral annular descent velocities studied with pulsed tissue Doppler imaging. J. Am. Soc. Echocardiogr. 11(9):841–848, 1998PubMedCrossRefGoogle Scholar
  15. 15.
    Galiuto L., Ignone G., DeMaria A. N. Contraction and relaxation velocities of the normal left ventricle using pulsed-wave tissue Doppler echocardiography. Am. J. Cardiol. 81:609–614, 1998PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia M. J., Smedira N. G., Greenberg N. L., Main M., Firstenberg M. S., Odabashian J., Thomas J. D. Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation. J. Am. Coll. Cardiol. 35:201–208, 2000PubMedCrossRefGoogle Scholar
  17. 17.
    Gharib M., Rambod E., Kheradvar A., Sahn D., Dabiri J. O. A global index for heart failure based on optimal vortex formation in the left ventricle. Proc. Natl. Acad. Sci. USA 103(16):6305–6308, 2006PubMedCrossRefGoogle Scholar
  18. 18.
    Gharib M., Rambod E., Shariff K. (1998) A universal time scale for vortex ring formation. J. Fluid Mech. 360:121–140CrossRefGoogle Scholar
  19. 19.
    Gilbert J. C., Glantz S. A. Determinants of left ventricular filling and of the diastolic pressure/volume-relationship. Circ. Res. 64:827–852, 1989PubMedGoogle Scholar
  20. 20.
    Glasson J. R., Green G. R., Nistal J. F. et al. Mitral annular size and shape in sheep with annuloplasty rings. J. Thorac. Cardiovasc. Surg. 117:302–309, 1998Google Scholar
  21. 21.
    Glasson J. R., Komeda M., Daughters G. T. et al. Most ovine mitral annular three-dimensional size reduction occurs before ventricular systole and is abolished with ventricular pacing. Circulation 96(Suppl II):115–122, 1997Google Scholar
  22. 22.
    Gorman III J. H., Gupta K. B., Streicher J. T. et al. Dynamic three dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112:712–726, 1996PubMedCrossRefGoogle Scholar
  23. 23.
    Groban L., Dolinski S. Y. Transesophageal echocardiographic evaluation of diastolic function. Chest 128(5):3652–3663, 2005PubMedCrossRefGoogle Scholar
  24. 24.
    Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology, 10th edn. WB Saunders Company, 2000Google Scholar
  25. 25.
    Hasegawa H., Little W. C., Ohno M., Brucks S., Morimoto A., Cheng H. J., Cheng C. P. Diastolic mitral annular velocity during the development of heart failure. J. Am. Coll. Cardiol. 41:1590–1597, 2003PubMedCrossRefGoogle Scholar
  26. 26.
    Hung M. J., Cherng W. J., Kuo L. T., Wang C. H., Chern M. S. Analysis of left atrial volume change rate during left ventricular diastolic phase with M-mode echocardiography for differentiation between normal and pseudonormal mitral inflow. Am. J. Cardiol. 89(5):552–556, 2002PubMedCrossRefGoogle Scholar
  27. 27.
    Ingels N. B. Jr., Daughters G. T., Nikolic S. D., DeAnda A., Moon M. R., Bolger A. F., Komeda M., Derby G. C., Yellin E. L., Miller D. C. (1996) Left ventricular diastolic suction with zero left atrial pressure in open-chest dogs. Am. J. Physiol. 270(4 Pt 2):H1217–1224PubMedGoogle Scholar
  28. 28.
    Jimenez J. H., Soerensen D. D., He Z., He S., Yoganathan A. P. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31(10):1171–1181, 2003PubMedCrossRefGoogle Scholar
  29. 29.
    Kheradvar A., Gorman R. C., Gorman J. H., Zeeshan A., Gharib M. Evaluation of isovolumic relaxation phase in the process of ventricular remodeling following myocardial infarction. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5:3654–3657, 2004PubMedGoogle Scholar
  30. 30.
    Kheradvar A., Kasalko J., Johnson D., Gharib M. An in-vitro study of changing profile heights in mitral bioprostheses and their influence on flow. ASAIO J 52(1):34–38, 2006PubMedCrossRefGoogle Scholar
  31. 31.
    Kheradvar A., Milano M., Gharib M. Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J 53(1):8–16, 2007PubMedCrossRefGoogle Scholar
  32. 32.
    Kheradvar A., Milano M., Gorman R. C., Gorman III J. H., Gharib M. Assessment of left ventricular elastic and viscous components based on ventricular harmonic behavior. Cardiovasc. Eng. 6(1):30–39, 2006PubMedCrossRefGoogle Scholar
  33. 33.
    Kilner P. J., Yang G. Z., Wilkes A. J., Mohiaddin R. H., Firmin D. N., Yacoub M. H. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000PubMedCrossRefGoogle Scholar
  34. 34.
    Kim W. Y., Bisgaard T., Nielsen S. L., Poulsen J. K., Pedersen E. M., Hasenkam J. M., Yoganathan A. P. Two-dimensional mitral flow velocity profiles in pig models using epicardial echo Doppler Cardiography. J. Am. Coll. Cardiol. 24:532–545, 1994PubMedCrossRefGoogle Scholar
  35. 35.
    Kim W. Y., Walker P. G., Pedersen E. M., Poulsen J. K., Oyre S., Houlind K., Yoganathan A. P. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol. 26:224–238, 1995PubMedCrossRefGoogle Scholar
  36. 36.
    Komoda T., Hetzer R., Uyama C. et al. Mitral annular function assessed by 3D imaging for mitral valve surgery. J. Heart Valve Dis. 3:483–490, 1994PubMedGoogle Scholar
  37. 37.
    Kovacs S. J., Meisner J. S., Yellin E. L. Modeling of diastole. Cardiol. Clin. 18:459–487, 2000PubMedCrossRefGoogle Scholar
  38. 38.
    Kranidis A., Kostopoulos K., Anthopoulos L. Evaluation of left ventricular filling by echocardiographic atrioventricular plane displacement in patients with coronary artery disease. Int. J. Cardiol. 48:183–186, 1995PubMedCrossRefGoogle Scholar
  39. 39.
    Krueger P. S., Gharib M. The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15(5):1271–1281, 2003CrossRefGoogle Scholar
  40. 40.
    Kuo L. C., Quinones M. A., Rokey R., Sartori M., Abinader E. G., Zoghbi W. A. Quantification of atrial contribution to left ventricular filling by pulsed Doppler echocardiography and the effect of age in normal and diseased hearts. Am. J. Cardiol. 59:1174–1178, 1987PubMedCrossRefGoogle Scholar
  41. 41.
    Nagueh S. F. Noninvasive evaluation of hemodynamics by Doppler echocardiography. Curr. Opin. Cardiol. 4:217–224, 1999CrossRefGoogle Scholar
  42. 42.
    Nishimura R. A., Tajik A. J. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta stone. J. Am. Coll. Cardiol. 30:8–18, 1997PubMedCrossRefGoogle Scholar
  43. 43.
    Ohno M., Cheng C. P., Little W. C. Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation 89:2241–2250, 1994PubMedGoogle Scholar
  44. 44.
    Ommen S. R., Nishimura R. A., Appleton C. P., Miller F. A., Oh J. K., Redfield M. M., Tajik A. J. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794, 2000PubMedGoogle Scholar
  45. 45.
    Ormiston J. A., Shah P., Tei C., Wong M. Size and motion of the mitral valve annulus in man. Circulation 64:113–120, 1981PubMedGoogle Scholar
  46. 46.
    Pai R. G., Tanimoto M., Jintapakorn W., Azevedo J., Pandian N. G., Shah P. M. Volume-rendered three-dimensional dynamic anatomy of the mitral annulus using transesophageal echocardiographic technique. J. Heart Valve Dis. 4:623–627, 1995PubMedGoogle Scholar
  47. 47.
    Poerner T. C., Goebel B., Unglaub P., Sueselbeck T., Strotmann J. M., Pfleger S., Borggrefe M., Haase K. K. Detection of a pseudonormal mitral inflow pattern: an echocardiographic and tissue Doppler study. Echocardiography 20(4):345–356, 2003PubMedCrossRefGoogle Scholar
  48. 48.
    Reul H., Talukder N., Muller W. Fluid mechanics of the natural mitral valve. J. Biomech. 14:361–372, 1981PubMedCrossRefGoogle Scholar
  49. 49.
    Rodriguez F., Langer F., Harrington K. B., Tibayan F. A., Zasio M. K., Cheng A., Liang D., Daughters G. T., Covell J. W., Criscione J. C., Ingels N. B., Miller D. C. Importance of mitral valve second-order chordae for left ventricular geometry, wall thickening mechanics, and global systolic function. Circulation 110(11 Suppl 1):II115–122, 2004PubMedGoogle Scholar
  50. 50.
    Salgo I. S., Gorman J. H. III, Gorman R. C., Jackson B. M., Bowen F. W., Plappert T., St John Sutton M. G., Edmunds L. H. Jr. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717, 2002PubMedCrossRefGoogle Scholar
  51. 51.
    Sohn D. W., Chai I. H., Lee D. J., Kim H. C. et al. Assessment of mitral annulus velocity by Doppler Tissue imaging in the evaluation of left ventricular diastolic function. J. Am. Coll. Cardiol. 30:474–480, 1997PubMedCrossRefGoogle Scholar
  52. 52.
    Standring S (2004) Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 39th edn. Edinburgh: Churchill LivingstoneGoogle Scholar
  53. 53.
    Steen T., Steen S. Filling of a model left ventricle studied by colour M mode Doppler. Cardiovasc. Res. 28(12):1821–1827, 1994PubMedCrossRefGoogle Scholar
  54. 54.
    Su H. M., Lin T. H., Voon W. C., Lee K. T., Chu C. S., Lai W. T., Sheu S. H. Differentiation of left ventricular diastolic dysfunction, identification of pseudonormal/restrictive mitral inflow pattern and determination of left ventricular filling pressure by Tei index obtained from tissue Doppler echocardiography. Echocardiography 23(4):287–294, 2006PubMedCrossRefGoogle Scholar
  55. 55.
    Thomas J. D., Weyman A. E. Echocardiographic Doppler evaluation of left ventricular diastolic function: physics and physiology. Circulation 84:977–990, 1991PubMedGoogle Scholar
  56. 56.
    Vierendeels J. A., Dick E., Verdonck P. R. Hydrodynamics of color M-mode Doppler flow wave propagation velocity V(p): a computer study. J. Am. Soc. Echocardiogr. 15:219–224, 2002PubMedCrossRefGoogle Scholar
  57. 57.
    Weiss J. L., Fredrisen J. W., Weisfeldt M. L. Hemodynamic determinants of the time course of fall in canine left ventricular pressure. J. Clin. Invest. 58:751–760, 1976PubMedGoogle Scholar
  58. 58.
    Whalley G. A., Walsh H. J., Gamble G. D., Doughty R. N. Comparison of different methods for detection of diastolic filling abnormalities. J. Am. Soc. Echocardiogr. 18(7):710–717, 2005PubMedCrossRefGoogle Scholar
  59. 59.
    Wierzbowska-Drabik K., Drozdz J., Plewka M., Trzos E., Krzeminska-Pakula M., Kasprzak J. D. The utility of pulsed tissue Doppler parameters for the diagnosis of advanced left ventricular diastolic dysfunction. Echocardiography 23(3):189–196, 2006PubMedCrossRefGoogle Scholar
  60. 60.
    Willert C. E., Gharib M. Digital particle image velocimetry. Exp. Fluids 10(4):181–193, 1991CrossRefGoogle Scholar
  61. 61.
    Yamakado T., Takagi E., Okubo S., Imanaka-Yoshida K., Tarumi T., Nakamura M., Nakano T. Effects of aging on left ventricular relaxation in humans. Circulation 95:917–923, 1997PubMedGoogle Scholar
  62. 62.
    Yellin E. L., Nikolic S., Frater R. W. M. (1990) Left-ventricular filling dynamics and diastolic function. Prog. Cardiovasc. Dis. 32(4):247–271PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA
  2. 2.Cardiovascular and Biofluid Dynamics LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations