Annals of Biomedical Engineering

, Volume 35, Issue 12, pp 2138–2144 | Cite as

A Numerical Model of Skin Electropermeabilization Based on In Vivo Experiments

  • Nataša Pavšelj
  • Veronique Préat
  • Damijan Miklavčič


As an alternative to viral methods that are controversial because of their safety issues, chemical and physical methods have been developed to enhance gene expression in tissues. Reversible increase of the cell membrane permeability caused by the electric field—electroporation—is currently one of the most efficient and simple non-viral methods of gene transfer. We performed a series of in vivo experiments, delivering plasmids to rat skin using external plate electrodes. The experiments showed that skin layers below stratum corneum can be permeabilized in this way. In order to study the course of skin tissue permeabilization by means of electric pulses, a numerical model using the finite element method was made. The model is based on the tissue-electrode geometry and electric pulses used in our in vivo experiments. We took into account the layered structure of skin and changes of its bulk electrical properties during electroporation, as observed in the in vivo experiments. We were using tissue conductivity values found in literature and experimentally determined electric field threshold values needed for tissue permeabilization. The results obtained with the model are in good agreement with the in vivo results of gene transfection in rat skin. With the model presented we used the available data to explain the mechanism of the tissue electropermeabilization propagation beyond the initial conditions dictated by the tissue initial conductivities, thus contributing to a more in-depth understanding of this process. Such a model can be used to optimize and develop electrodes and pulse parameters.


Electropermeabilization Electro gene transfer Finite element method Plate electrodes 



This research was supported by the European Commission under the 5th framework under the grant Cliniporator QLK-1999-00484 and the Slovenian Research Agency.


  1. 1.
    Chizmadzhev Y. A., A. V. Indenbom, P. I. Kuzmin, S. V. Galichenko, J. C. Weaver, R. O. Potts. Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophys. J. 74:843–856, 1998PubMedGoogle Scholar
  2. 2.
    Drabick J. J., J. Glasspool-Malone, A. King, R. W. Malone. Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol. Ther. 3(2):249–255, 2001PubMedCrossRefGoogle Scholar
  3. 3.
    Ferber D. Gene therapy: safer and virus-free? Science 294:1638–1642, 2001PubMedCrossRefGoogle Scholar
  4. 4.
    Gabriel C., S. Gabriel, E. Corthout. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41:2231–2249, 1996PubMedCrossRefGoogle Scholar
  5. 5.
    Gabriel S., R. W. Lau, C. Gabriel. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:2251–2269, 1996PubMedCrossRefGoogle Scholar
  6. 6.
    Gallo S. A., A. R. Oseroff, P. G. Johnson, S. W. Hui. Characterization of electric-pulse-induced permeabilization of porcine skin using surface electrodes. Biophys. J. 72:2805–2811, 1997PubMedGoogle Scholar
  7. 7.
    Jadoul A., J. Bouwstra, V. Préat. Effects of iontophoresis and electroporation on the stratum corneum; Review of the biophysical studies. Adv. Drug Deliv. Rev. 35:89–105, 1999PubMedCrossRefGoogle Scholar
  8. 8.
    Mehier-Humbert S., R. H. Guy. Physical methods for gene transfer: improving the kinetic of gene delivery into cells. Adv. Drug Del. Rev. 57(5):733–753, 2005CrossRefGoogle Scholar
  9. 9.
    Menon G. K. New insights into skin structure: scratching the surface. Adv. Drug Deliv. Rev. 54(Suppl.1):S3–S17, 2002PubMedCrossRefGoogle Scholar
  10. 10.
    Mir L. M. Therapeutic perspectives of in vivo cell electropermeabilization. Review article. Bioelectrochemistry 53:1–10, 2000CrossRefGoogle Scholar
  11. 11.
    Pavlin M., D. Miklavčič. Effective conductivity of a suspension of permeabilized cells: a theoretical analysis. Biophys. J. 85:719–729, 2003PubMedGoogle Scholar
  12. 12.
    Pavlin M., N. Pavšelj, D. Miklavčič. Dependence of induced transmembrane potential on cell density, arrangement and cell position inside a cell system. IEEE Trans. Biomed. Eng. 49(6):605–612, 2002PubMedCrossRefGoogle Scholar
  13. 13.
    Pavšelj N., Z. Bregar, D. Cukjati, D. Batiuskaite, L. M. Mir, D. Miklavčič. The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans. Biomed. Eng. 52(8):1373–1381, 2005PubMedCrossRefGoogle Scholar
  14. 14.
    Pavšelj N., V. Préat. DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. J. Cont. Rel. 106:407–415, 2005CrossRefGoogle Scholar
  15. 15.
    Pliquett U. Mechanistic studies of molecular transdermal transport due to skin electroporation. Adv. Drug. Deliv. Rev. 35:41–60, 1999PubMedCrossRefGoogle Scholar
  16. 16.
    Pliquett U., R. Langer, J. C. Weaver. Changes in the passive electrical properties of human stratum corneum due to electroporation. Biochim. Biophys. Acta 1239:111–121, 1995PubMedCrossRefGoogle Scholar
  17. 17.
    Pliquett U., J. C. Weaver. Electroporation of human skin: simultaneous measurement of changes in the transport of two fluorescent molecules and in the passive electrical properties. Bioelectrochem. Bioenerg. 39:1–12, 1996CrossRefGoogle Scholar
  18. 18.
    Prausnitz M. R., V. G. Bose, R. Langer, Weaver J. C. Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA 90:10504–10508, 1993PubMedCrossRefGoogle Scholar
  19. 19.
    Prud’homme G. J., Y. Glinka, Khan A. S., Draghia-Akli R. Electroporation-enhanced nonviral gene transfer for the prevention of treatment of immunological, endocrine and neoplastic diseases. Curr. Gene Ther. 6:243–273, 2006PubMedCrossRefGoogle Scholar
  20. 20.
    Susil R., D. Šemrov, D. Miklavčič. Electric field – induced transmembrane potential depends on cell density and organization Electro Magnetobiol. 17(3):391–399, 1998Google Scholar
  21. 21.
    Šel D., D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, D. Miklavčič. Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng. 52:816–827, 2005PubMedCrossRefGoogle Scholar
  22. 22.
    Valič B., M. Golzio, M. Pavlin, A. Schatz, C. Faurie, B. Gabriel, J. Teissié, M. P. Rols, D. Miklavčič. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur. Biophys. J. 32:519–528, 2003PubMedCrossRefGoogle Scholar
  23. 23.
    Weaver J. C., T. E. Vaughan, Y. Chizmadzhev. Theory of electrical creation of aqueous pathways across skin transport barriers. Adv. Drug Del. Rev. 35:21–39, 1999CrossRefGoogle Scholar
  24. 24.
    Wolf H., M. P. Rols, E. Boldt, E. Neumann, J. Teissié. Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys. J. 66:524–531, 1994PubMedCrossRefGoogle Scholar
  25. 25.
    Yamamoto T., Y. Yamamoto. Electrical properties of the epidermal stratum corneum. Med. Biol. Eng. 14(2):151–158, 1976PubMedCrossRefGoogle Scholar
  26. 26.
    Yamamoto T., Y. Yamamoto. Dielectric constant and resistivity of epidermal stratum corneum. Med. Biol. Eng. 14(5):494–500, 1976PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang L., G. Widera, D. Rabussay. Enhancement of the effectiveness of electroporation-augmented cutaneous DNA vaccination by a particulate adjuvant. Bioelectrochemistry 63(1–2):369–373, 2004PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2007

Authors and Affiliations

  • Nataša Pavšelj
    • 1
  • Veronique Préat
    • 2
  • Damijan Miklavčič
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Pharmaceutical TechnologyUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations