Annals of Biomedical Engineering

, Volume 35, Issue 12, pp 2031–2038 | Cite as

A Biodegradable Slotted Tube Stent Based on Poly(l-lactide) and Poly(4-hydroxybutyrate) for Rapid Balloon-Expansion

  • Niels Grabow
  • Carsten M. Bünger
  • Christine Schultze
  • Kathleen Schmohl
  • David P. Martin
  • Simon F. Williams
  • Katrin Sternberg
  • Klaus-Peter Schmitz


Safe vascular stent application requires rapid expansion of the stent to minimize the risk of procedural ischemia. While high expansion speeds can be achieved with metallic stents, they are not necessarily feasible with biodegradable polymeric stents due to the viscoelastic material behavior. This study reports on a novel biodegradable polymer blend material based on poly(l-lactide) (PLLA) and poly(4-hydroxybutyrate) (P4HB), and describes the mechanical properties and in vitro degradation behavior of a balloon-expandable slotted tube stent concept. The stent prototypes with nominal dimensions of 6.0 × 25 mm were manufactured by laser machining of solution cast PLLA/P4HB tubes (I.D. = 2.8 mm, d = 300 μm). The stents were expanded within 1 min by balloon inflation to 8 bar, after 5 min preconditioning in 37 °C water. Recoil and collapse pressure were 4.2% and 1.1 bar, respectively. During in vitro degradation collapse pressure initially increased to a maximum at 4 w and then decreased thereafter. After 48 w, molecular weight was decreased by 82%. In summary, the PLLA/P4HB slotted tube stents allowed for rapid balloon-expansion and exhibited adequate mechanical scaffolding properties suitable for a broad range of vascular and non-vascular applications.


PLLA P4HB Recoil Collapse Laser machining Mechanical properties Degradation 



The authors wish to express their appreciation to Dipl.-Ing. Peter Behrens and Dr.-Ing. Wolfram Schmidt, Institute for Biomedical Engineering, University of Rostock, for sharing their expertise in stent testing. Dipl.-Ing. Steffen Mews, Institute for Biomedical Engineering, University of Rostock, is gratefully acknowledged for his technical support during the stent degradation study.


  1. 1.
    Anderson H. V., P. P. Leimgruber, G. S. Roubin, D. L. Nelson, A. R. Gruentzig 1985 Distal coronary artery perfusion during percutaneous transluminal coronary angioplasty. Am. Heart J. 110:720–726PubMedCrossRefGoogle Scholar
  2. 2.
    Biamino, G. Biodegradable stents in the sfa: are they the answer? International Symposium on Endovascular Therapy 2006Google Scholar
  3. 3.
    Bünger, C. M., N. Grabow, K. Sternberg, M. Goosmann, K. P. Schmitz, H. J. Kreutzer, H. Ince, S. Klische, C. A. Nienaber, D. P. Martin, S. F. Williams, E. Klar, and W. Schareck. A biodegradable stent based on poly(l-lactide) and poly(4-hydroxybutyrate) for peripheral vascular application: preliminary experience in the pig. J. Endovasc. Ther. to appear October 2007Google Scholar
  4. 4.
    Bünger C. M., N. Grabow, K. Sternberg, L. Ketner, C. Kröger, B. Lorenzen, K. Hauenstein, K. P. Schmitz, H. J. Kreutzer, D. Lootz, H. Ince, C. A. Nienaber, E. Klar, W. Schareck 2006 Iliac anastomotic stenting with a biodegradable poly-l-lactide stent: A preliminary study after 1 and 6 weeks. J. Endovasc. Ther. 13:539–548PubMedCrossRefGoogle Scholar
  5. 5.
    Colombo A., P. Hall, S. Nakamura, Y. Almagor, L. Maiello, G. Martini, A. Gaglione, S. L. Goldberg, J. M. Tobis 1995 Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 91:1676–1688PubMedGoogle Scholar
  6. 6.
    Erne P., M. Schier, T. J. Resink 2005 The road to bioabsorbable stents: reaching clinical reality? Cardiovasc. Inter. Rad. 29:11–16CrossRefGoogle Scholar
  7. 7.
    Fischer E. W., H. J. Sterzel, G. Wegner 1973 Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid.-Z. Z. Polym. 251:980–990CrossRefGoogle Scholar
  8. 8.
    Grabow N., C. Bunger, K. Sternberg, S. Mews, K. Schmohl, K. P. Schmitz 2007 Mechanical properties of a biodegradable balloon-expandable stent from poly(l-lactide) for peripheral vascular applications. ASME J. Med. Dev. 1:84–88Google Scholar
  9. 9.
    Grabow N., S. Mews, K. Schmohl, K. Sternberg, C. M. Bünger, K. P. Schmitz 2006 Long-term in vitro degradation study for a biodegradable PLLA stent. Biomaterialien (München) 7:154Google Scholar
  10. 10.
    Grabow N., M. Schlun, K. Sternberg, N. Hakansson, S. Kramer, K. P. Schmitz 2005 Mechanical properties of laser cut poly(l-lactide) micro-specimens: Implications for stent design, manufacture, and sterilization. ASME J. Biomech. Eng. 127:25–31CrossRefGoogle Scholar
  11. 11.
    Herzog C., C. Grebe, A. Mahnken, J. O. Balzer, M. G. Mack, S. Zangos, H. Ackermann, S. Schaller, T. Seifert, B. Ohnesorge, T. J. Vogl 2005 Peripheral artery stent visualization and in-stent stenosis analysis in 16-row computed tomography: An in-vitro evaluation. Eur. Radiol. 15:2276–2283PubMedCrossRefGoogle Scholar
  12. 12.
    Holmes D. R. Jr., J. W. Moses, J. Schofer, M. C. Morice, E. Schampaert, M. B. Leon 2006 Cause of death with bare metal and sirolimus-eluting stents. Eur. Heart J. 27:2815–2822PubMedCrossRefGoogle Scholar
  13. 13.
    Isotalo T. M., J. P. Nuutine, A. Vaajanen, P. M. Martikainen, M. Laurila, P. Tormala, M. Talja, T. L. Tammela 2006 Biocompatibility properties of a new braided biodegradable urethral stent: a comparison with a biodegradable spiral and a braided metallic stent in the rabbit urethra. BJU Int. 97:856–859PubMedCrossRefGoogle Scholar
  14. 14.
    Isotalo T., M. Talja, T. Valimaa, P. Tormala, T. L. Tammela 2002 A bioabsorbable self-expandable, self-reinforced poly-l-lactic acid urethral stent for recurrent urethral strictures: long-term results. J. Endourol. 16:759–762PubMedCrossRefGoogle Scholar
  15. 15.
    Joner M., A. V. Finn, A. Farb, E. K. Mont, F. D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H. K. Gold, R. Virmani 2006 Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 48:193–202PubMedCrossRefGoogle Scholar
  16. 16.
    Lauto A., M. Ohebshalom, M. Esposito, J. Mingin, P. S. Li, D. Felsen, M. Goldstein, D. P. Poppas 2001 Self-expandable chitosan stent: design and preparation. Biomaterials 22:1869–1874PubMedCrossRefGoogle Scholar
  17. 17.
    Martin D. P., D. F. Williams 2003 Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable material. Biochem. Eng. J. 16:97–105CrossRefGoogle Scholar
  18. 18.
    Mitomo H., W. C. Hsieh, K. Nishiwaki, K. Kasuya, Y. Doi 2001 Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by comamonas acidovorans. Polymer 42:3455–3461CrossRefGoogle Scholar
  19. 19.
    Ormiston J. A., M. W. Webster, G. Armstrong 2006 First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-l-lactic acid everolimus-eluting coronary stent. Catheter. Cardiovasc. Interv. 69:128–131CrossRefGoogle Scholar
  20. 20.
    Schmidt W., R. Andresen, P. Behrens, K. P. Schmitz 2002 Characteristic mechanical properties of balloon-expandable peripheral stent systems. Rofo 174:1430–1437PubMedGoogle Scholar
  21. 21.
    Schmidt W., K. P. Schmitz. Devices. In: Lanzer P., editor. Mastering of Endovascular Techniques – a Guide to Excellence. Philadelphia: Lippincott Williams & Wilkins; 2006, pp. 114–135Google Scholar
  22. 22.
    Su S. H., R. Y. Chao, C. L. Landau, K. D. Nelson, R. B. Timmons, R. S. Meidell, R. C. Eberhart 2003 Expandable bioresorbable endovascular stent. I. Fabrication and properties. Ann. Biomed. Eng. 31:667–677PubMedCrossRefGoogle Scholar
  23. 23.
    Tamai H., K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, H. Uehata 2000 Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404PubMedGoogle Scholar
  24. 24.
    Tan L. P., S. S. Venkatraman, J. F. Joso, F. Y. Boey 2006 Collapse pressures of bilayered biodegradable stents. J. Biomed. Mater. Res. B Appl. Biomater. 79:102–107PubMedGoogle Scholar
  25. 25.
    Tanimoto, S., P. W. Serruys, L. Thuesen, D. Dudek, B. de Bruyne, B. Chevalier, and J. A. Ormiston. Comparison of in vivo acute stent recoil between the bioabsorbable everolimus-eluting coronary stent and the everolimus-eluting cobalt chromium coronary stent: insights from the ABSORB and SPIRIT trials. Catheter. Cardiovasc. Interv. 2007Google Scholar
  26. 26.
    Uurto I., J. Mikkonen, J. Parkkinen, L. Keski-Nisula, T. Nevalainen, M. Kellomaki, P. Tormala, J. P. Salenius 2005 Drug-eluting biodegradable poly-d/l-lactic acid vascular stents: an experimental pilot study. J. Endovasc. Ther. 12:371–379PubMedCrossRefGoogle Scholar
  27. 27.
    Venkatraman S. S., L. P. Tan, J. F. Joso, Y. C. Boey, X. Wang 2006 Biodegradable stents with elastic memory. Biomaterials 27:1573–1578PubMedCrossRefGoogle Scholar
  28. 28.
    Vogt F., A. Stein, G. Rettemeier, N. Krott, R. Hoffmann, J. vom Dahl, A. K. Bosserhoff, W. Michaeli, P. Hanrath, C. Weber, R. Blindt 2004 Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. Eur. Heart J. 25:1330–1340PubMedCrossRefGoogle Scholar
  29. 29.
    Zilberman M., R. C. Eberhart 2006 Drug-eluting bioresorbable stents for various applications. Annu. Rev. Biomed. Eng. 8:153–180PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  • Niels Grabow
    • 1
  • Carsten M. Bünger
    • 2
  • Christine Schultze
    • 1
  • Kathleen Schmohl
    • 1
  • David P. Martin
    • 3
  • Simon F. Williams
    • 3
  • Katrin Sternberg
    • 1
  • Klaus-Peter Schmitz
    • 1
  1. 1.Institute for Biomedical EngineeringUniversity of RostockRostockGermany
  2. 2.Department of SurgeryUniversity of RostockRostockGermany
  3. 3.Tepha, Inc.LexingtonUSA

Personalised recommendations