Annals of Biomedical Engineering

, Volume 35, Issue 11, pp 1907–1913

The Effect of Regional Variations of the Trabecular Bone Properties on the Compressive Strength of Human Vertebral Bodies

  • Do-Gyoon Kim
  • Christine A. Hunt
  • Roger Zauel
  • David P. Fyhrie
  • Yener N. Yeni
Article

Abstract

Cancellous centrum is a major component of the vertebral body and significantly contributes to its structural strength and fracture risk. We hypothesized that the variability of cancellous bone properties in the centrum is associated with vertebral strength. Microcomputed tomography (micro-CT)-based gray level density (GLD), bone volume fraction (BV/TV), and finite element modulus (E) were examined for different regions of the trabecular centrum and correlated with vertebral body strength determined experimentally. Two sets of images in the cancellous centrum were digitally prepared from micro-CT images of eight human vertebral bodies (T10–L5). One set included a cubic volume (1 per vertebral centrum, n = 8) in which the largest amount of cancellous material from the centrum was included but all the shell materials were excluded. The other set included cylindrical volumes (6 per vertebral centrum, n = 48) from the anterior (4 regions: front, center, left, and right of the midline of vertebra) and the posterior (2 regions: left and right) regions of the centrum. Significant positive correlations of vertebral strength with GLD (r2 = 0.57, p = 0.03) and E (r2 = 0.63, p = 0.02) of the whole centrum and with GLD (r2 = 0.65, p = 0.02), BV/TV (r2 = 0.72, p = 0.01) and E (r2 = 0.85, p = 0.001) of the central region of the vertebral centrum were found. Vertebral strength decreased with increasing coefficient of variation of GLD, BV/TV, and E calculated from subregions of the vertebral centrum. The values of GLD, BV/TV, and E in centrum were significantly smaller for the anterior region than for the posterior region. Overall, these findings supported the significant role of regional variability of centrum properties in determining the whole vertebral strength.

Keywords

Vertebral centrum Anatomic site differences Micro-CT Large-scale finite element modeling BV/TV 

References

  1. 1.
    Banse X., Devogelaer J. P., Munting E., Delloye C., Cornu O., Grynpas M. Inhomogeneity of human vertebral cancellous bone: Systematic density and structure patterns inside the vertebral body. Bone 28(5):563–571, 2001PubMedCrossRefGoogle Scholar
  2. 2.
    Buckley J. M., Leang D. C., Keaveny T. M. Sensitivity of vertebral compressive strength to endplate loading distribution. J. Biomech. Eng. 128(5):641–646, 2006PubMedCrossRefGoogle Scholar
  3. 3.
    Buckley J. M., Loo K., Motherway J. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40(3):767–774, 2007PubMedCrossRefGoogle Scholar
  4. 4.
    Cao K. D., Grimm M. J., Yang K.-H. Load sharing within a human lumber vertebral body using the finite element method. Spine 12:E253–E260, 2001CrossRefGoogle Scholar
  5. 5.
    Cendre E., Mitton D., Roux J. P., Arlot M. E., Duboeuf F., Burt-Pichat B., Rumelhart C., Peix G., Meunier P. J. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: Relationships with histomorphometry and biomechanics. Osteoporos. Int. 10(5):353–360, 1999PubMedCrossRefGoogle Scholar
  6. 6.
    Cody D. D., Goldstein S. A., Flynn M. J., Brown E. B. Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load. Spine 16(2):146–154, 1991PubMedGoogle Scholar
  7. 7.
    Cody D. D., Gross G. J., Hou F. J., Spencer H. J., Goldstein S. A., Fyhrie D. P. Femoral strength is better predicted by finite element models than QCT and DXA. J. Biomech. 32(10):1013–1020, 1999PubMedCrossRefGoogle Scholar
  8. 8.
    Crawford R. P., Cann C. E., Keaveny T. M. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750, 2003PubMedCrossRefGoogle Scholar
  9. 9.
    Cvijanovic O., Bobinac D., Zoricic S., Ostojic Z., Maric I., Crncevic-Orlic Z., Kristofic I., Ostojic L. Age- and region-dependent changes in human lumbar vertebral bone. Spine 29(21):2370–2375, 2005CrossRefGoogle Scholar
  10. 10.
    Fyhrie D. P., Hoshaw S. J., Hamid M. S., Hou F. J. Shear stress distribution in the trabeculae of human vertebral bone. Ann. Biomed. Eng. 28(10):1194–1199, 2000PubMedCrossRefGoogle Scholar
  11. 11.
    Hou F. J., Lang S. M., Hoshaw S. J., Reimann D. A., Fyhrie D. P. Human vertebral body apparent and hard tissue stiffness. J. Biomech. 31:1009–1015, 1998PubMedCrossRefGoogle Scholar
  12. 12.
    Jacobs, C. R., B. R. Davis, C. J. Rieger, J. J. Francis, M. Saad, and D. P. Fyhrie. NACOB presentation to ASB Young Scientist Award: Postdoctoral. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. North American Congress on Biomechanics. J. Biomech. 32(11):1159–1164, 1999Google Scholar
  13. 13.
    Kim D.-G., Christopherson G., Dong X. N., Fyhrie D. P., Yeni Y. N. The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone. Bone 35:1375–1382, 2004PubMedCrossRefGoogle Scholar
  14. 14.
    Kim D.-G., Dong X. N., Cao T., Baker K. C., Shaffer R. R., Fyhrie D. P., Yeni Y. N. Evaluation of filler materials used for uniform load distribution at boundaries during structural biomechanical testing of whole vertebrae. J. Biomech. Eng. 128:161–165, 2006PubMedCrossRefGoogle Scholar
  15. 15.
    Kim D.-G., Hunt C. A., Zauel R., Fyhrie D. P., Yeni Y. N. Prediction of human vertebral body strength using microcomputed tomography-based finite element models from cancellous centrum with and without the cortical shell. Trans. Ortho. Res. Soc. 30:1265, 2005Google Scholar
  16. 16.
    Kopperdahl D. L., Roberts A. D., Keaveny T. M. Localized damage in vertebral bone is most detrimental in regions of high strain energy density. J. Biomech. Eng. 121(6):622–628, 1999PubMedGoogle Scholar
  17. 17.
    Kothari M., Keaveny T. M., Lin J. C., Newitt D. C., Majumdar S. Measurement of intraspecimen variations in vertebral cancellous bone architecture. Bone 25(2):245–250, 1999PubMedCrossRefGoogle Scholar
  18. 18.
    Kuhn J. L., Goldstein S. A., Feldkamp L. A., Goulet R. W., Jesion G. Evaluation of a microcomputed tomography system to study trabecular bone structure. J. Ortho. Res. 8:833–842, 1990CrossRefGoogle Scholar
  19. 19.
    Ladd A. J., Kinney J. H., Haupt D. L., Goldstein S. A. Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J. Ortho. Res. 16(5):622–628, 1998CrossRefGoogle Scholar
  20. 20.
    Liebschner M. A., Kopperdahl D. L., Rosenberg W. S., Keaveny T. M. Finite element modeling of the human thoracolumbar spine. Spine 28(6):559–65, 2003PubMedCrossRefGoogle Scholar
  21. 21.
    McCubbrey D. A., Cody D. D., Peterson E. L., Kuhn J. L., Flynn M. J., Goldstein S. A. Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J. Biomech. 28(8):891–899, 1995PubMedCrossRefGoogle Scholar
  22. 22.
    Mitton D., Cendre E., Roux J.-P., Arlot M. E., Peix G., Rumelhart C., Babot D., Meunier P. J. Mechanical properties of ewe vertebral cancellous bone compared with histomorphometry and high-resolution computed tomography parameters. Bone 22(6):651–658, 1998PubMedCrossRefGoogle Scholar
  23. 23.
    Old J. L., Calvert M. Vertebral compression fractures in the elderly. Am. Fam. Physician. 69:111–116, 2004PubMedGoogle Scholar
  24. 24.
    Reimann D. A., Hames S. M., Flynn M. J., Fyhrie D. P. A cone beam computed tomography system for true 3D imaging of specimens. Appl. Radiat. Isot. 48(10–12):1433–1436, 1997PubMedCrossRefGoogle Scholar
  25. 25.
    van Rietbergen B., Weinans H., Huiskes R., Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28(1):69–81, 1995PubMedCrossRefGoogle Scholar
  26. 26.
    Ruegsegger P., Koller B., Mueller R. T. A microtomographic system for the nondestructive evaluation of bone architecture. Calc. Tiss. Int. 58:24–29, 1996CrossRefGoogle Scholar
  27. 27.
    Sankoh A., Huque M., Dubey S. Some comments on frequently used multiple endpoint adjustments methods in clinical trials. Stat. Med. 16:2529–2542, 1997PubMedCrossRefGoogle Scholar
  28. 28.
    Silva M. J., Keaveny T. M., Hayes W. C. Load sharing between the shell and centrum in the lumbar vertebral body. Spine. 22(2):140–150, 1997PubMedCrossRefGoogle Scholar
  29. 29.
    Simpson E. K., Parkinson I. H., Manthey B., Fazzalari N. L. Intervertebral disc disorganization is related to trabecular bone architecture in the lumbar spine. J. Bone. Min. Res. 16(4):681–687, 2001CrossRefGoogle Scholar
  30. 30.
    Ulrich D., van Rietbergen B., Weinans H., Ruegsegger P. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J. Biomech. 31:1187–1192, 1998PubMedCrossRefGoogle Scholar
  31. 31.
    Un K., Bevill G., Keaveny T. M. The effects of side-artifacts on the elastic modulus of trabecular bone. J. Biomech. 39:1955–1963, 2006PubMedCrossRefGoogle Scholar
  32. 32.
    Yeh O. C., Keaveny T. M. Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study. Bone 25(2):223–228, 1999PubMedCrossRefGoogle Scholar
  33. 33.
    Yeni Y. N., Christopherson G., Dong X. N., Kim D.-G., Fyhrie D. P. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone. J. Biomech. Eng. 127(1):1–8, 2005PubMedCrossRefGoogle Scholar
  34. 34.
    Yeni Y. N., Dong X. N., Cao T., Baker K. C., Schaffer R. R., Fryhrie D. P. Evaluation of filler materials used for uniform load distribution at boundaries during structural biomechanical testing of whole vertebrae. Trans. Ortho. Res. Soc. 29:1116, 2004Google Scholar
  35. 35.
    Yeni Y. N., Fyhrie D. P. Finite element predicted apparent stiffness is a consistent predictor of apparent strength in human cancellous bone tested with different boundary conditions. J. Biomech. 34(12):1649–1654, 2001PubMedCrossRefGoogle Scholar
  36. 36.
    Yeni Y. N., Hou F. J., Vashishth D., Fyhrie D. P. Trabecular shear stress in human vertebral cancellous bone: intra- and inter-individual variations. J. Biomech. 34(10):1341–1346, 2001PubMedCrossRefGoogle Scholar
  37. 37.
    Zauel R., Yeni Y. N., Christopherson G. T., Cody D. D., Fyhrie D. P. Segmentation algorithm for accurate 3D representation of microcomputed tomographic images of human vertebral bodies. Trans. Ortho. Res. Soc. 29:1018, 2004Google Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  • Do-Gyoon Kim
    • 1
  • Christine A. Hunt
    • 1
  • Roger Zauel
    • 1
  • David P. Fyhrie
    • 2
  • Yener N. Yeni
    • 1
  1. 1.Bone and Joint Center, Department of Orthopaedics and RehabilitationHenry Ford HospitalDetroitUSA
  2. 2.Orthopaedic Research LaboratoriesUC Davis, School of MedicineSacramentoUSA

Personalised recommendations